Skip to main content
Log in

Scheme of the Complex Formation of DNA Telomeric Sequence with TMPyP4 Porphyrine

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The model of the complex formation in a DNA oligonucleotide solution in the presence of TMPyP4 porphyrine has been recognized using a matrix method basing on the experimentally observed composition-property features. The experimental data on UV spectroscopic titration of G4 Tel22 oligonucleotide by TMPyP4 porphyrine have been interpreted in terms of equilibrium complex formation of the ligand with the macromolecule at four independent binding sites (coordination vacancies). The suggested matrix model has considered the mutual influence of the ligands bound at each of the Tel22 coordination vacancies. Sequential attachment of the TMPyP4 ligand to the Tel22(TMPyP4)n complex has affected the shape of the UV absorption spectrum of the earlier bound ligands. The cross-validation of the conventional stepwise complex formation model and the matrix binding model has confirmed the validity of the new interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Neidle, S. and Balasubramanian, S., Quadruplex Nucleic Acids, Cambridge: The Royal Society of Chemistry, 2006. doi https://doi.org/10.1039/9781847555298-00208

    Book  Google Scholar 

  2. Müller, J., Metallomics 2010, vol. 2, p. 318. doi https://doi.org/10.1039/C000429D

    Article  CAS  PubMed  Google Scholar 

  3. Burge, S., Parkinson, G.N., Hazel, P., Todd, A.K., and Neidle, S., Nucleic Acids Res. 2006, vol. 34, p. 5402. doi https://doi.org/10.1093/nar/gkl655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wong, H.M., Payet, L., and Huppert, J.L., Curr. Opin. Mol. Ther. 2009, vol. 11, p. 146. doi https://doi.org/10.1039/b702491f

    CAS  PubMed  Google Scholar 

  5. Murat, P., Singh, Y., and Defrancq, E., Chem. Soc. Rev. 2011, vol. 40, p. 5293. doi https://doi.org/10.1039/c1cs15117g

    Article  CAS  PubMed  Google Scholar 

  6. Balasubramanian, S., Hurley, L.H., and Neidle, S., Nat. Rev. Drug Discov. 2011, vol. 10, p. 261. doi https://doi.org/10.1038/nrd3428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Calvoa, E.P. and Wasserman, M., Mol. Biochem. Parasitol. 2016, vol. 207, p. 33. doi https://doi.org/10.1016/j.molbiopara.2016.05.009

    Article  CAS  Google Scholar 

  8. Li, Q., Xiang, J.-F., Yang, Q.-F., Sun, H.-X., Guan, A.-J., and Tang, Y.-L., Nucleic Acids Res. 2013, vol. 41, p. D1115. doi https://doi.org/10.1093/nar/gks1101

  9. Monchaud, D. and Teulade-Fichou, M.P., Org. Biomol. Chem. 2008, vol. 6, p. 627. doi https://doi.org/10.1039/b714772b

    Article  CAS  PubMed  Google Scholar 

  10. De Cian, A., Lacroix, L., Douarre, C., Temime-Smaali, N., Trentesaux, C., Riou, J.F., and Mergny, J.L., Biochimie 2008, vol. 90, p. 131. doi https://doi.org/10.1016/j.biochi.2007.07.011

    Article  CAS  PubMed  Google Scholar 

  11. Nagesh, N., Buscaglia, R., Dettler, J.M., and Lewis, E.A., Biophys. J. 2010, vol. 98, p. 2628. doi https://doi.org/10.1016/j.bpj.2010.02.050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Monchaud, D., Granzhan, A., Saettel, N., Guedin, A., Mergny, J-L, and Teulade-Fichou, M-P., J. Nucl. Acids, 2010, vol. 2010. ID 525862. doi https://doi.org/10.4061/(2010)/525862

  13. Neidle, S., FEBS J., 2010, vol. 277, p. 1118. doi https://doi.org/10.1111/j.1742-4658.2009.07463.x

    Article  CAS  PubMed  Google Scholar 

  14. Raju, G., Srinivas, R., Reddy, V.S., Idris, M.M., Kamal, A., and Nagesh, N., PLoS ONE, 2012, vol. 7, p. 35920. doi https://doi.org/10.1371/journal.pone.0035920

    Article  CAS  Google Scholar 

  15. Yaku, H., Murashima, T., Miyoshi, D., and Sugimoto, N., Chem. Commun. 2010, vol. 46, p. 5740. doi https://doi.org/10.1039/c0cc00956c

    Article  CAS  Google Scholar 

  16. Yaku, H., Fujimoto, T., Murashima, T., Miyoshi, D., and Sugimoto, N., Chem. Commun. 2012, vol. 48, p. 6203. doi https://doi.org/10.1039/c2cc31037f

    Article  CAS  Google Scholar 

  17. Yaku, H., Murashima, T., Miyoshi, D., and Sugimoto, N., Molecules 2012, vol. 17, p. 10586. doi https://doi.org/10.3390/molecules170910586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Romera, C., Bombarde, O., Bonnet, R., Gomez, D., and Dumy, P., Biochimie 2011, vol. 93, no. 11, p. 1310. doi https://doi.org/10.1016/j.biochi.2011.06.008

    Article  CAS  PubMed  Google Scholar 

  19. Martino. L., Pagano. B., I., Neidle. S., and Giancola. C., J. Phys. Chem. (B) 2009, vol. 113, p. 14779. doi https://doi.org/10.1021/jp9066394

    CAS  Google Scholar 

  20. Morris, M.J., Wingate, K.L, Silwal, J., Leeper, T.C., and Basu, S., Nucl. Acids Res. 2012, vol. 40, p. 4137. doi https://doi.org/10.1093/nar/gkr1308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Han, H., Langley, D.R., Rangan, A., and Hurley, L.H., J. Am. Chem. Soc., 2001, vol. 123, p. 8902. doi https://doi.org/10.1021/ja002179j

    Article  CAS  PubMed  Google Scholar 

  22. Wie, C., Jia, G., Yuan, J., Feng, Z., and Li C., Biochem. 2006, vol. 45, p. 6681. doi https://doi.org/10.1021/bi052356z

    Article  CAS  Google Scholar 

  23. Cogoi, S., Paramasivam, M., Spolaore, B., and Xodo, L.E., Nucl. Acids Res. 2008, vol. 36, p. 3765. doi https://doi.org/10.1093/nar/gkn120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Neidle, S., Curr. Opin. Struct. Biol. 2009, vol. 19, p. 239. doi https://doi.org/10.1016/j.sbi.2009.04.001

    Article  CAS  PubMed  Google Scholar 

  25. Jia, G., Feng, Z., Wie, C., Zhou, J. X., and Li, C., J. Phys. Chem. (B), 2009, vol. 113, p. 16237. doi https://doi.org/10.1021/jp906060d

    Article  CAS  Google Scholar 

  26. Kudrev, A., Russ. J. Gen. Chem. 2016, vol. 86, p. 1353. doi https://doi.org/10.1134/S1070363216060219

    Article  CAS  Google Scholar 

  27. Chaires, J. B., Methods in Enzymology 2001, vol. 340, p. 3.

    Article  CAS  PubMed  Google Scholar 

  28. Le Vu, H., Buscaglia, R., Chaires, J.B., and Lewis, E.A., Analyt. Biochem. 2013, vol. 434, p. 233. doi https://doi.org/10.1016/j.ab.2012.11.030

    Article  CAS  Google Scholar 

  29. Manaye, S., Eritja, R., Avinґo, A., Jaumot, J., and Gargallo, R., Biochim. Biophys. Acta 2012, vol. 1820, p. 1987. doi 101016/j.bbagen.2012.09.006

    Article  CAS  PubMed  Google Scholar 

  30. Bhattacharjee, A.J., Ahluwalia, K., Taylor, S., Jin, O., Nicoludis, J.M., Buscaglia, R., and Chaires, J.B., Kornfilt, D.J.P., Marquardt, D.G.S., and Yatsunyk, L.A., Biochimie 2011, vol. 93, p. 1297. doi https://doi.org/10.1016/j.biochi.2011.05.038

    Article  CAS  PubMed  Google Scholar 

  31. Bucek P., Gargallo R., and Kudrev A., Anal. Chim. Acta 2010, vol. 683, p. 69. doi https://doi.org/10.1016/j.aca.2010.10.008

    Article  CAS  PubMed  Google Scholar 

  32. Kudrev, A.G., Russ. J. Gen. Chem. 2002, vol. 72, p. 1501. doi https://doi.org/10.1023/A:1023315112622

    Article  CAS  Google Scholar 

  33. Kudrev, A.G., Russ. J. Gen. Chem. 2006, vol. 76, p. 1782. doi https://doi.org/10.1134/S107036320611020X

    Article  CAS  Google Scholar 

  34. Kudrev, A.G., Talanta 2013, vol. 116, p. 541. doi https://doi.org/10.1016/j.talanta.2013.07.01

    Article  CAS  PubMed  Google Scholar 

  35. Kudrev A.G., Polym. Sci. (A) 2013, vol. 55, p. 586. doi https://doi.org/10.1134/S0965545X13090022

    CAS  Google Scholar 

  36. Kudrev, A.G., Russ. J. Gen. Chem. 2014, vol. 84. N 3, p. 424. doi https://doi.org/10.1134/S1070363214030037

  37. Kudrev A., J. Anal. Meth. Chem., 2017, vol. 2017, Article ID 6780521. doi https://doi.org/10.1155/2017/6780521

  38. Haq, I., Trent, J.O., Chowdhry, B.Z., and Jenkins, T.C., J. Am. Chem. Soc., 1999, vol. 121, p. 1768. doi https://doi.org/10.1021/ja981554t

    Article  CAS  Google Scholar 

  39. Han, H., Langley, D.R., Rangan, A., and Hurley, L.H., J. Am. Chem. Soc. 2001, vol. 123, p. 8902. doi https://doi.org/10.1021/ja002179j

    Google Scholar 

  40. Gray, R.D., Li, J., and Chaires, J.B., J. Phys. Chem. (B), 2009, vol. 113, p. 2676. doi https://doi.org/10.1021/jp809578f

    Article  CAS  Google Scholar 

  41. Wei, C., Jia, G., Zhou, J., Han, G., and Li, C., Phys. Chem. Chem. Phys. 2009, vol. 11, p. 4025. doi https://doi.org/10.1039/b901027k

    Article  CAS  PubMed  Google Scholar 

  42. Ruan, T.L., DaVis, S.J., Powell, B.M., Harbeck, C.P., Habdas, J., Habdas, P., and Yatsunyk, L.A., Biochimie 2017, vol. 132, p. 121. doi https://doi.org/10.1016/j.biochi.2016.11.003

    Article  CAS  PubMed  Google Scholar 

  43. Parkinson, G.N., Ghosh, R., and Neidle, S., Biochem. 2007, vol. 46, p. 2390. doi https://doi.org/10.1021/bi062244n

    Article  CAS  Google Scholar 

  44. DuPont, J.I., Henderson, K.L., Metz, A., Le, V.H., Emerson, J.P., and Lewis, E.A., Biochim. Biophys. Acta 2016, vol. 1860 P. 902. doi https://doi.org/10.1016/j.bbagen.2015.09.004

  45. Gao, Y. and Guanga, T., X., RSC Adv., 2017, vol. 7, p. 55098. doi https://doi.org/10.1039/C7RA07758K

    Article  CAS  Google Scholar 

  46. Job, P., Ann. Chim. 1928, vol. 9, p. 113.

    CAS  Google Scholar 

  47. Klotz, I.M., Science 1982, vol. 217, p. 1247. doi https://doi.org/10.1126/science.6287580

    Article  CAS  PubMed  Google Scholar 

  48. Schwarz, G., Biophys. Struct. Mechanism. 1976, vol. 2, p. 1.

    Article  CAS  Google Scholar 

  49. Marquardt, D.W., J. Soc. Ind. Appl. Math., 1963, vol. 2, p. 431.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Kudrev.

Additional information

Original Russian Text © A.G. Kudrev, 2018, published in Zhurnal Obshchei Khimii, 2018, Vol. 88, No. 12, pp. 2063–2073.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kudrev, A.G. Scheme of the Complex Formation of DNA Telomeric Sequence with TMPyP4 Porphyrine. Russ J Gen Chem 88, 2578–2588 (2018). https://doi.org/10.1134/S1070363218120198

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363218120198

Keywords

Navigation