Skip to main content
Log in

Leaching of Uranium from Its Mineralization and Experimental Design of the Process

  • Published:
Radiochemistry Aims and scope

Abstract

The central composite design (CCD) of experiments was used to study the leaching of uranium and iron from the mineralized Gabal Al-Aglab uranium ore sample using sulfuric acid solution. The leaching factors were sulfuric acid concentration, contact time, particle size, temperature, solid to liquid ratio, and stirring rate. The uranium and iron leaching efficiencies were 71.6 and 10.8%, respectively. Three factors were taken into consideration in the experimental planning: leaching time, solid/liquid ratio, and stirring rate. The obtained results were statistically analyzed using analysis of variances (ANOVA) to determine the main effects and interactions between the investigated factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Satybaldiyev, B., Lehto, J., Suksi, J., et al., Hydrometallurgy, 2015, vol. 155, pp. 125–131.

    Article  CAS  Google Scholar 

  2. Santos, A.E. and Ladeira, A.C.Q., Environ. Sci. Technol., 2011, vol. 45, no. 8, pp. 3591–3597.

    Article  CAS  PubMed  Google Scholar 

  3. Mason, C.F.V., Turney, W.R.J.R., Thomson, B.M., et al., Environ. Sci. Technol., 1997, vol. 31, no. 10, pp. 2707–2711.

    Article  CAS  Google Scholar 

  4. Frackiewicz, K., Kiegiel, K., Herdzik-Koniecko, I., et al., Nukleonika, 2012, vol. 58, no. 4, pp. 451–459.

    Google Scholar 

  5. Merritt, R.C., The Extractive Metallurgy of Uranium, Colorado School of Mines Research Inst. (USA), 1971.

    Google Scholar 

  6. Colin, R.P., Paul, L.S., and Yiu, C., Energy Sources, 1982, vol. 6, no. 3, pp. 215–243.

    Article  Google Scholar 

  7. Khawassek, Y.M., Taha, M.H., and Eliwa, A.A., IJNESE, 2016, vol. 6, pp. 62–73.

    Google Scholar 

  8. Abdel-Wahab, S.M., Omar, S.A., Khawassek, Y.M., et al., IJNESE, 2016, vol. 6, pp. 35–48.

    Google Scholar 

  9. Moussa, M.A., Daher, A.M., Omar, S.A., et al., J. Basic Environ. Sci., 2014, vol. 1, pp. 65–75.

    Google Scholar 

  10. Habashi, F., A Textbook of Hydrometallurgy, Quebec, 1999, 2nd ed.

    Google Scholar 

  11. Manual of acid in situ leach uranium mining technology, IAEA-TECDOC-1239, Vienna: IAEA, 2001.

  12. Solodov, I., In situ leach mining of uranium in the permafrost zone, Khiagda mine, Russian Federation, URAM-2014: Int. Symp. on Uranium Raw Material for the Nuclear Fuel Cycle: Exploration, Mining, Production, Supply and Demand, Economics and Environmental Issues, Vienna: IAEA, 2014

    Google Scholar 

  13. Podzemnoe vyshchelachivanie rud (In situ Leaching of Ores), Laverov, N.P., Ed., Moscow: Akad. Gornykh Nauk, 1998.

  14. Levenspiel, O., Chemical Reaction Engineering, New York: Wiley, 2001.

    Google Scholar 

  15. Nikkhah Khosrow, H.A., Autoclave design and scale-up from batch test data: a review of sizing methods and their bases, SME Preprint, Simons, 1998, no. 98-149; http://technology.infomine.com/hydrometmine/papers/K.Nikkhah-autoclave.pdf.

    Google Scholar 

  16. Anand Rao, K., Sreenivas, T., Vinjamur, M., and Suri, A.K., Hydrometallurgy, 2014, vol. 146, pp. 119–127.

    Article  CAS  Google Scholar 

  17. Zakrzewska, G., Herdzik-Koniecko, I., Cojocaru, C., and Chajduk, E., J. Hazard. Mater., 2014, vol. 275, pp. 136–145.

    Article  CAS  Google Scholar 

  18. Ayoub, R.R., Geology and radioactivity of Gabal Um Tweir area, North Desert, Egypt, PhD Thesis, Cairo Univ., 2003.

    Google Scholar 

  19. Ayoub, R.R. and Awadalla, G.S., J. Faculty Educ., Benha Univ., 2009, vol. 4, no. 1, pp. 11–27.

    Google Scholar 

  20. Marczenko, Z., Spectrophotometric Determination of Elements, Chichester: Horwood, 1976.

    Google Scholar 

  21. Sayan, E. and Bayramoglu, M., Hydrometallurgy, 2004, vol. 71, pp. 397–401.

    Article  CAS  Google Scholar 

  22. Montgomery, D.C., Design and Analysis of Experiments, New York: Wiley, 2005.

    Google Scholar 

  23. Oughlis-Hammache, F., Hamaidi-Maouche, N., Aissani-Benissad, F., and Bourouina-Bacha, S., J. Chem. Eng. Data, 2010, vol. 55, pp. 2489–2494.

    Article  CAS  Google Scholar 

  24. Lozano Blanco, L.J., Meseguer Zapata, V.F., and De Juan Garcia, D., Hydrometallurgy, 1999, vol. 54, no. 1, pp. 41–48.

    Article  CAS  Google Scholar 

  25. Hanrahan, G. and Lu, K., Crit. Rev. Anal. Chem., 2006, vol. 36, nos. 3–4, pp. 141–151.

    Article  CAS  Google Scholar 

  26. Anderson, M. and Whitcomb, P., Practical Tools for Effective Experimentation, 2007, 2nd ed.

    Google Scholar 

  27. Murray, R., Spiegel, R., and Stephens, L.J., Theory and Problems of Statistics, New York: McGraw-Hill, 2008, 4th ed.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. M. Khawassek.

Additional information

The text was submitted by the author in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khawassek, Y.M. Leaching of Uranium from Its Mineralization and Experimental Design of the Process. Radiochemistry 60, 678–684 (2018). https://doi.org/10.1134/S1066362218060188

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1066362218060188

Keywords

Navigation