Skip to main content
Log in

Influence of a Buffer Layer on the Formation of a Thin-Film Nickel Catalyst for Carbon Nanotube Synthesis

  • PHYSICS OF NANOSTRUCTURES
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The formation of nanoparticles of a thin-film nickel catalyst applied on a buffer layer in the form of pure titanium, titanium oxide, or titanium nitride has been studied. It has been shown that if nanotubes are synthesized in three stages (oxidation, reduction, and growth of nanotubes), the situation may arise when the metallic catalyst becomes isolated from the surface, and hence, from the hydrocarbon flux, as a result of which the nanotube growth stops. Isolation takes place when the interface between titanium oxide and the gas phase in the reactor moves. In this case, titanium oxide goes round a nickel oxide nanoparticle and insulates it. The displacement rate of this interface and the coefficient of hydrogen diffusion in titanium dioxide have been determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. S. V. Bulyarskiy, Carbon Nanotubes: Technology, Adjustment of Characteristics, and Applications (Strezhen’, Ul’yanovsk, 2011).

    Google Scholar 

  2. C. Rutherglen and P. Burke, Nano Lett. 7, 3296 (2007). doi 10.1021/nl0714839

    Article  ADS  Google Scholar 

  3. K. Jensen, J. Weldon, H. Garcia, and A. Zettl, Nano Lett. 7, 3508 (2007). doi 10.1021/nl0721113

    Article  ADS  Google Scholar 

  4. S. V. Bulyarskiy, S. A. Bulyarskaya, L. N. Vostretsova, A. A. Dudin, A. P. Orlov, A. A. Pavlov, A. S. Basaev, E. P. Kitsyuk, A. A. Shamanaev, and Yu. P. Shaman, Nano- Mikrosist. Tekh., No. 5, 3 (2015).

  5. K. Kempa, J. Rybczynski, Z. P. Huang, K. Gregorczyk, et al., Adv. Mater. 19, 421 (2007). doi 10.1002/adma. 200601187

    Article  Google Scholar 

  6. L. A. Chernozatonskii, Y. V. Gulyaev, Z. J. Kosakovskaja, et al., Chem. Phys. Lett. 233, 63 (1995). doi 10.1016/0009-2614(94)01418-U

    Article  ADS  Google Scholar 

  7. W. A. De Heer, A. Chatelain, and D. Ugarte, Science 270, 1179 (1995). doi 10.1126/science.270.5239.1179

    Article  ADS  Google Scholar 

  8. A. G. Rinzler, J. H. Hafner, P. Nikolaev, et al., Science 269, 1550 (1995). doi 10.1126/science.269.5230.1550

    Article  ADS  Google Scholar 

  9. O. A. Louchev, Th. Laude, Y. Sato, and H. Kanda, J. Chem. Phys. 118, 7622 (2003). doi 10.1063/1.1562195

    Article  ADS  Google Scholar 

  10. V. Jourdain and Ch. Bichara, Carbon 58, 2 (2013). doi 10.1016/j.carbon.2013.02.046

    Article  Google Scholar 

  11. S. V. Bulyarskiy and A. S. Basaev, Growth Catalysts for Carbon Nanotubes (LAP LAMBERT, 2015).

    Google Scholar 

  12. S. Amelinckx, D. Bernaerts, X. B. Zhang, G. Van Tendeloo, and J. Van Landuyt, Science 267, 1334 (1995). doi 10.1126/science.267.5202.1334

    Article  ADS  Google Scholar 

  13. M. Chhowalla, K. B. K. Teo, C. Ducati, N. L. Rupesinghe, G. A. J. Amaratunga, A. C. Ferrari, D. Roy, J. Robertson, and W. I. Milne, J. Appl. Phys. 90, 5308 (2001). doi 10.1063/1.1410322

    Article  ADS  Google Scholar 

  14. L. Valentini, J. M. Kenny, L. Lozzi, and S. Santucci, J. Appl. Phys. 92, 6188 (2002). doi 10.1063/1.1410322

    Article  ADS  Google Scholar 

  15. Z. F. Ren, Z. P. Huang, D. Z. Wang, J. G. Wen, J. W. Xu, J. H. Wang, L. E. Calvet, J. Chen, J. F. Klemic, and M. A. Reed, Appl. Phys. Lett. 75, 1086 (1999). doi 10.1063/1.124605

    Article  ADS  Google Scholar 

  16. B. E. Deal and A. S. Grove, J. Appl. Phys. 36, 3770 (1965). doi 10.1063/1.1713945

    Article  ADS  Google Scholar 

  17. A. S. Grove, Physics and Technology of Semiconductor Device (Willey, New York, 1967), Chap. 2.

    Google Scholar 

  18. D. C. Lagoudas, X. Ma, D. A. Miller, and D. H. Allen, Int. J. Eng. Sci. 33, 2327 (1995). doi 10.1016/0020-7225(95)00073-7

    Article  Google Scholar 

  19. P. B. Entchev, D. C. Lagoudas, and J. C. Slattery, Int. J. Eng. Sci. 39, 695 (2001). doi 10.1016/S0020-7225(00)00053-7

    Article  Google Scholar 

  20. J. Unnam, R. N. Shenoy, and R. K. Clark, Oxid. Met. 26, 231 (1986).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Bulyarskiy.

Additional information

Translated by V. Isaakyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bulyarskiy, S.V., Zenova, E.V., Lakalin, A.V. et al. Influence of a Buffer Layer on the Formation of a Thin-Film Nickel Catalyst for Carbon Nanotube Synthesis. Tech. Phys. 63, 1834–1839 (2018). https://doi.org/10.1134/S1063784218120253

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784218120253

Navigation