Skip to main content
Log in

On the possibility of determining the thermodynamic temperature of colloid solutions by the nuclear magnetic resonance method

  • Short Communications
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

A new method of determining the thermodynamic temperature of colloid solutions placed onto a sealed glass vessel is considered; the method is based on measurements of the magnetic susceptibility in flowing liquid by the magnetic nuclear resonance method. Experimental results show that the Curie law holds for colloid solutions in the temperature range of 278–333 K, in which ferrofluid cells prepared based on these solutions are used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. E. B. Aleksandrov and A. K. Vershovskii, Phys. Usp. 52, 573 (2009).

    Article  ADS  Google Scholar 

  2. A. I. Zhernovoi and S. V. D’yachenko, Tech. Phys. 60, 595 (2015).

    Article  Google Scholar 

  3. R. E. Rosensweig, Ferrohydrodynamics (Cambridge Univ. Press, Cambridge, 2005).

    Google Scholar 

  4. V. V. Davydov, V. I. Dudkin, and A. Yu. Karseev, Tech. Phys. 60, 456 (2015).

    Article  Google Scholar 

  5. P. M. Agruzov, I. V. Pleshakov, E. E. Bibik, and A. V. Shamray, Appl. Phys. Lett. 104, 071 108-4 (2014).

  6. A. I. Zhernovoi and S. V. D’yachenko, Izv. Vyssh. Uchebn. Zaved., Fiz. 58 (1), 119 (2015).

    Google Scholar 

  7. A. F. Pshenichnikov and A. V. Lebedev, Colloid J. 67, 189 (2005).

    Article  Google Scholar 

  8. M. V. Kulakov, Technological Measurements and Instruments for Chemical Production (Al’yans, Moscow, 2008).

    Google Scholar 

  9. S. I. Kabardina, Measurement of Physical Quantities (Binom, Moscow, 2009).

    Google Scholar 

  10. R. Fukuda and A. Hirai, J. Phys. Soc. Jpn. 81, 1499 (2013).

    Google Scholar 

  11. R. E. Habbach, J. S. Battocletti, A. J. Sances, R. L. Bowman, and V. K. Kydravcev, Rev. Sci. Instrum. 80, 428 (2009).

    Google Scholar 

  12. V. V. Davydov, V. I. Dudkin, and A. Yu. Karseev, Tech. Phys. Lett. 41, 355 (2015).

    Article  ADS  Google Scholar 

  13. A. Abragam, The Principles of Nuclear Magnetism (Clarendon, Oxford, 1961; Inostrannaya Literatura, Moscow, 1967).

    Google Scholar 

  14. V. V. Davydov, V. I. Dudkin, and A. Yu. Karseev, Izv. Vyssh. Uchebn. Zaved., Fiz. 58 (2), 8 (2015).

    Google Scholar 

  15. V. I. Chizhik, Nuclear Magnetic Relaxation (Izd Leningrad. Univ., Leningrad, 1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Davydov.

Additional information

Original Russian Text © V.V. Davydov, V.I. Dudkin, 2016, published in Zhurnal Tekhnicheskoi Fiziki, 2016, Vol. 86, No. 7, pp. 154–158.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davydov, V.V., Dudkin, V.I. On the possibility of determining the thermodynamic temperature of colloid solutions by the nuclear magnetic resonance method. Tech. Phys. 61, 1115–1119 (2016). https://doi.org/10.1134/S1063784216070094

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784216070094

Navigation