Skip to main content
Log in

On Possible States of the Crystal Structure Preceding to a Phase Transition in Zn1 – xVxSe (0.01 ≤ x ≤ 0.10) Crystals

  • SEMICONDUCTORS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The systematic new formations observed in the reciprocal lattice of the cubic structural modification of a II–VI compound are characterized using a detailed neutron diffraction study of bulk semiconducting ZnSe crystals with an increased vanadium content. Direct evidence that the additional sites k = (1/3 1/3 1/3) 2π/a (k is the wave vector and a is cubic unit cell parameter) observed by neutron scattering in the crystals, in the case when they belong to mutually penetrated rotated sublattices, contain a superstructure contribution formed by short-wave deformation, is obtained for the first time. This structure state is determined as a pretransition to the concentration fcc–hcp phase transformation, and the basis functions that allow one to analyze atomic displacements, the correlation between which create distortion-type superstructures, are indicated for the transition through one-arm channel, considering the transitions by the star of wave vector k5 of the fcc lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Introduction to the Physics of Diluted Magnetic Semiconductors, Ed. by J. Kossut, and J. A. Gaj, Springer Ser. Mater. Sci. 144 (2010).

  2. S. Mirov, V. Fedorov, I. Moskalev, D. Martyshkin, and C. Kim, Laser Photon. Rev. 4, 21 (2010).

    Article  ADS  Google Scholar 

  3. K. S. Lee, G. Oh, and E. K. Kim, Solar Energy 164, 262 (2018).

    Article  ADS  Google Scholar 

  4. T. Dietl and H. Ohno, Rev. Mod. Phys. 86, 187 (2014).

    Article  ADS  Google Scholar 

  5. M. Makkar and R. Viswanatha, Curr. Sci. 112, 1421 (2017).

    Article  Google Scholar 

  6. P. Kaur, S. Kumar, A. Singh, C. L. Chen, C. L. Dong, T. S. Chan, K. P. Lee, C. Srivastava, S. M. Rao, and M. K. Wu, Superlatt. Microstruct. 83, 785 (2015).

    Article  ADS  Google Scholar 

  7. M. Hassan, S. Younas, F. Sher, S. S. Husain, S. Riaz, and S. Naseem, Appl. Phys. A 123, 352 (2017).

    Article  ADS  Google Scholar 

  8. D. Saikia, R. D. Raland, and J. P. Borah, Phys. E (Amsterdam, Neth.) 83, 56 (2016).

  9. J. Yang, F. Muckel, W. Baek, R. Fainblat, H. Chang, G. Bacher, and T. Hyeon, J. Am. Chem. Soc. 139, 6761 (2017).

    Article  Google Scholar 

  10. Y.-T. Liu, L.-P. Hou, S.-Y. Zou, L. Zhang, B.-B. Liang, Y.-C. Guo, A. Bukhtiar, M. U. Farooq, and B.-S. Zou, Chin. Phys. Lett. 35, 037801 (2018).

    Article  ADS  Google Scholar 

  11. M. P. Shaskol’skaya, Crystallography (Vyssh. Shkola, Moscow, 1984) [in Russian].

    Google Scholar 

  12. J. Furdyna and J. Kossuth, Semiconductors and Semimetals (Elsevier, Amsterdam, 1988), Vol. 25.

    Google Scholar 

  13. Chin-Yu Yeh, Z. W. Lu, S. Froyen, and A. Zunger, Phys. Rev. B 46, 10086 (1992).

    Article  Google Scholar 

  14. V. F. Agekyan, Phys. Solid State 44, 2013 (2002).

    Article  ADS  Google Scholar 

  15. A. S. Pashinkin, G. N. Tishchenko, I. V. Korneeva, and B. N. Ryzhenko, Sov. Phys. Crystallogr. 5, 243 (1960).

    Google Scholar 

  16. Yu. Yu. Loginov, P. D. Brown, and K. Durose, Regularities of Structural Defects Formation in Semiconductors A 2 B 6 (Logos, Moscow, 2003) [in Russian].

    Google Scholar 

  17. M. T. Sebastian and P. Krishna, Prog. Cryst. Growth Charact. Mater. 14, 103 (1987).

    Article  Google Scholar 

  18. V. S. Urusov and N. N. Eremin, Crystal Course, The Short Course (Mosk. Gos. Univ., Moscow, 2005), Part 2 [in Russian].

  19. A. Kelly and K. M. Knowles, Crystallography and Defects in Crystals (Wiley, Chichester, 2012).

    Book  Google Scholar 

  20. E. Makovicky, Rev. Min. Geochem. 61, 7 (2006).

    Article  Google Scholar 

  21. G. Krishnaiah, N. Madhusudhana Rao, D. Raja Reddy, B. K. Reddy, and P. Shreedhara Reddy, J. Cryst. Growth 310, 26 (2008).

    Article  ADS  Google Scholar 

  22. T. P. Surkova, S. F. Dubinin, V. I. Maximov, and S. A. Lopez-Rivera, Phys. Status Solidi C 9, 1830 (2012).

    Article  ADS  Google Scholar 

  23. V. I. Maksimov, S. F. Dubinin, and V. D. Parkhomenko, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 7, 105 (2013).

    Article  Google Scholar 

  24. V. I. Maksimov, S. F. Dubinin, T. P. Surkova, and A. V. Korolev, Phys. Solid State 55, 2027 (2013).

    Article  ADS  Google Scholar 

  25. V. I. Maksimov, S. F. Dubinin, and T. P. Surkova, Phys. Solid State 56, 912 (2014).

    Article  ADS  Google Scholar 

  26. V. I. Maksimov, S. F. Dubinin, and T. P. Surkova, Phys. Solid State 56, 2393 (2014).

    Article  ADS  Google Scholar 

  27. V. I. Maksimov, T. P. Surkova, V. D. Parkhomenko, and E. N. Yushkova, Phys. Solid State 58, 650 (2016).

    Article  ADS  Google Scholar 

  28. T. Surkova, V. Maksimov, S. Dubinin, and S. A. Lo-pez-Rivera, Phys. Status Solidi C 13, 456 (2016).

    Article  ADS  Google Scholar 

  29. V. I. Maksimov, E. N. Maksimova, and T. P. Surkova, Phys. Solid State 60, 49 (2018).

    Article  ADS  Google Scholar 

  30. V. I. Maksimov, S. F. Dubinin, and T. P. Surkova, Crystallogr. Rep. 61, 111 (2016).

    Article  ADS  Google Scholar 

  31. S. F. Dubinin, V. I. Maksimov, V. D. Parkhomenko, V. I. Sokolov, A. N. Baranov, P. S. Sokolov, and Yu. A. Dorofeev, Phys. Solid State 53, 1362 (2011).

    Article  ADS  Google Scholar 

  32. V. I. Maksimov, S. F. Dubinin, A. N. Baranov, V. I. Sokolov, P. S. Sokolov, and V. D. Parkhomenko, Phys. Met. Metallogr. 114, 734 (2013).

    Article  ADS  Google Scholar 

  33. M. E. Fleet, Am. Mineralog. 62, 540 (1977).

  34. E. Michalski, M. Demianiuk, S. Kaczmarek, and J. Żmija, Acta Phys. Polon. A 58, 711 (1980).

    Google Scholar 

  35. T. Roisnel and J. Rodriguez-Carvajal, Winplotr, a Grafic Tool for Powder Diffraction (LLB, CEA-CNRS, France, 2017). http://www.cdifx.univ-rennes1.fr/winplotr/winplotr.htm.

  36. O. V. Kovalev, Irreducible and Induced Representations and Co-Representations of Fedorov’s Groups, Reference Guide (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  37. Yu. A. Izyumov, V. E. Naish, and R. P. Ozerov, Neutron Diffraction of Magnetic Materials (Atomizdat, Moscow, 1981; Springer, New York, 1991), Vol. 2.

  38. Yu. A. Izyumov and V. N. Syromyatnikov, Phase Transitions and Crystal Symmetry, Vol. 38 of Fundamental Theories of Physics (Nauka, Moscow, 1984; Springer, Netherlands, 1990).

  39. F. Bialas, L. Pytlik, and W. Sikora, Open Phys. 14, 559 (2016).

    Article  Google Scholar 

  40. International Tables for Crystallography, Vol. A: Space Group Symmetry, Ed. by T. Hahn (Int. Union Crystallogr., Springer, 2005).

  41. S. F. Dubinin, V. I. Sokolov, S. G. Teploukhov, V. D. Parkhomenko, and N. B. Gruzdev, Phys. Solid State 48, 2275 (2006).

    Article  ADS  Google Scholar 

  42. S. F. Dubinin, V. I. Sokolov, S. G. Teploukhov, V. D. Parkhomenko, V. V. Gudkov, A. T. Lonchakov, I. V. Zhevstovskikh, and N. B. Gruzdev, Phys. Solid State 49, 1235 (2007).

    Article  ADS  Google Scholar 

  43. V. Gudkov, A. Lonchakov, V. Sokolov, and I. Zhev-stovskikh, J. Korean Phys. Soc. 53, 63 (2008).

    Article  ADS  Google Scholar 

  44. V. V. Gudkov and I. B. Bersuker, Prog. Theor. Chem. Phys. 23, 143 (2012).

    Article  Google Scholar 

  45. J. F. Smith, in Binary Alloy Phase Diagrams, 2nd ed., ASM/NIST Data Program for Alloy Phase Diagrams (ASM Int., Materials Park, OH, 1996).

  46. F. Kröger, The Chemistry of Imperfect Crystals (North-Holland, Amsterdam, 1964).

    Book  Google Scholar 

  47. A. A. Rempel’ and A. I. Gusev, Non-Stoichometry in Solid State (Fizmatlit, Moscow, 2018) [in Russian].

  48. N. V. Selezneva, P. N. G. Ibrahim, N. M. Toporova, E. M. Sherokalova, and N. V. Baranov, Acta Phys. Polon. A 133, 450 (2018).

    Article  Google Scholar 

  49. D. M. Chizhikov and V. P. Schastlivyi, Selenium and Selenides (Nauka, Moscow, 1964) [in Russian].

    Google Scholar 

  50. L. H. Lewis and J. B. Goodenough, J. Solid State Chem. 114, 346 (1995).

    Article  ADS  Google Scholar 

  51. M. Akizuki, Am. Mineral. 66, 1006 (1981).

    Google Scholar 

  52. M. Akizuki, Am. Mineral. 68, 847 (1983).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was performed in the framework of the state test by the themes (S.R. No. AAAA-A18-118020190112-8) and “Electron” (S.R. No. AAAA-A18-118020190098-5, using UNU “NMK IMP.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Maksimov.

Additional information

Translated by Yu. Ryzhkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maksimov, V.I., Maksimova, E.N., Surkova, T.P. et al. On Possible States of the Crystal Structure Preceding to a Phase Transition in Zn1 – xVxSe (0.01 ≤ x ≤ 0.10) Crystals. Phys. Solid State 60, 2424–2435 (2018). https://doi.org/10.1134/S1063783419010177

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783419010177

Navigation