Skip to main content
Log in

Modifying the Structure of Multiwalled Carbon Nanotubes with Continuous and Pulsed Ion Beams

  • LOW-DIMENSIONAL SYSTEMS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Changes in the local atomic and electronic structure and the chemical state of the surface of multiwalled carbon nanotubes (MWCNTs) irradiated with continuous and pulsed ion beams are studied using transmission electron microscopy, X-ray photoelectron spectroscopy, and X-ray absorption near-edge spectroscopy. It is demonstrated that changes in the structure and the chemical state of MWCNTs under continuous irradiation with argon ions are attributable to the radiation-induced defect formation. When a pulsed carbon–proton beam is used, thermal effects exert a considerable influence on the structure of carbon nanotubes. The obtained results suggest that continuous and pulsed ion beams are suitable for targeted functionalization of physical and chemical properties of MWCNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. S. Majumdar, P. Nag, and P. Devi, Mater. Chem. Phys. 147, 79 (2014).

    Article  Google Scholar 

  2. H. Liu, W. Zhang, H. Yu, L. Gao, Z. Song, S. Xu, M. Li, Y. Wang, H. Song, and J. Tang, Appl. Mater. Interfaces 8, 840 (2016).

    Article  Google Scholar 

  3. A. G. Kurenya, L. G. Bulusheva, I. P. Asanov, O. V. Se-delnikova, and A. V. Okotrub, Phys. Status Solidi B 252, 2524 (2015).

    Article  ADS  Google Scholar 

  4. R. Tang, Y. Shi, Z. Hou, and L. Wei, Sensors 17, 882 (2017).

    Article  Google Scholar 

  5. M. Rahmandoust and M. R. Ayatollahi, Adv. Struct. Mater. 39, 1 (2016).

    Article  Google Scholar 

  6. E. Abdel-Fattah, D. Ogawa, and K. Nakamura, J. Phys. D: 50, 265301 (2017).

    Article  ADS  Google Scholar 

  7. V. A. Gribkov, F. I. Grigor’ev, B. A. Kalin, and B. L. Yakushin, Perspective Radiation-Beam Technologies of Material Processing (Kruglyi God, Moscow, 2001) [in Russian].

    Google Scholar 

  8. Yu. V. Trushin, Physical Science of Materials (Nauka, St. Petersburg, 2000) [in Russian].

    Google Scholar 

  9. M. Scardamaglia, C. Struzzi, F. J. Aparicio Rebollo, P. de Marco, P. R. Mudimela, J.-F. Colomer, M. Amati, L. Gregoratti, L. Petaccia, R. Snyders, and C. Bittencourt, Carbon 83, 118 (2015).

    Article  Google Scholar 

  10. P. M. Korusenko, V. V. Bolotov, S. N. Nesov, S. N. Povoroznyuk, and I. P. Khailov, Nucl. Instrum. Methods Phys. Res., Sect. B 358, 131 (2015).

    Google Scholar 

  11. V. I. Boiko, A. N. Valyaev, and A. D. Pogrebnyak, Phys. Usp. 42, 1139 (1999).

    Article  ADS  Google Scholar 

  12. Y. Isakova, A. Pushkarev, I. Khailov, and H. Zhong, Rev. Sci. Instrum. 86, 073305 (2015).

    Article  ADS  Google Scholar 

  13. J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, Nucl. Instrum. Methods Phys. Res. Phys. Res., Sect. B 268, 1818 (2010).

    Google Scholar 

  14. S. Tanuma, C. J. Powell, and D. R. Penn, Surf. Interface Anal. 43, 689 (2011).

    Article  Google Scholar 

  15. L. G. Bulusheva, A. V. Okotrub, Y. V. Fedoseeva, A. G. Kurenya, I. P. Asanov, O. Y. Vilkov, A. A. Koόs, and N. Grobert, Phys. Chem. Chem. Phys. 17, 23741 (2015).

    Article  Google Scholar 

  16. V. V. Bolotov, P. M. Korusenko, S. N. Nesov, S. N. Povoroznyuk, and E. V. Knyazev, Nucl. Instrum. Methods Phys. Res., Sect. B 337, 1 (2014).

    Google Scholar 

  17. V. V. Bolotov, V. E. Kan, and E. V. Knyazev, Proc. Eng. 152, 701 (2016).

    Article  Google Scholar 

  18. S. N. Nesov, P. M. Korusenko, S. N. Povoroznyuk, V. V. Bolotov, E. V. Knyazev, and D. A. Smirnov, Nucl. Instrum. Methods Phys. Res., Sect. B 410, 222 (2017).

    Google Scholar 

  19. S. N. Nesov, P. M. Korusenko, V. V. Bolotov, S. N. Povoroznyuk, and D. A. Smirnov, Phys. Solid State 59, 2030 (2017).

    Article  ADS  Google Scholar 

  20. M. M. Brzhezinskaya, A. S. Vinogradov, A. V. Krestinin, G. I. Zvereva, A. P. Kharitonov, and I. I. Kulakova, Phys. Solid State 52, 876 (2010).

    Article  Google Scholar 

  21. Yu. V. Fedoseeva, A. V. Okotrub, L. G. Bulusheva, E. A. Maksimovskiy, B. V. Senkovskiy, Yu. M. Borz-dov, and Yu. N. Palyanov, Diamond Rel. Mater. 70, 46 (2016).

    Article  ADS  Google Scholar 

  22. Yu. V. Fedoseeva, L. G. Bulusheva, A. V. Okotrub, D. V. Vyalikh, Junping Huo, Huaihe Song, Jisheng Zhou, and Xiaohong Chen, Mater. Chem. Phys. 135, 235 (2012).

    Article  Google Scholar 

  23. R. P. Gandhiraman, D. Nordlund, C. Javier, J. E. Ko-ehne, B. Chen, and M. Meyyappan, J. Phys. Chem. C 118, 18706 (2014).

    Article  Google Scholar 

  24. V. V. Bolotov, P. M. Korusenko, S. N. Nesov, and S. N. Povoroznyuk, Phys. Solid State 56, 835 (2014).

    Article  ADS  Google Scholar 

  25. A. Ganguly, S. Sharma, P. Papakonstantinou, and J. Hamilton, J. Phys. Chem. C 115, 17009 (2011).

    Article  Google Scholar 

  26. S. C. Ray, Z. N. Tetana, R. Erasmus, W.-F. Pong, and N. J. Coville, Appl. Phys. A 115, 153 (2014).

    Article  ADS  Google Scholar 

  27. K. L. Klein, A. V. Melechko, T. E. McKnight, S. T. Retterer, P. D. Rack, J. D. Fowlkes, D. C. Joy, and M. L. Simpson, J. Appl. Phys. 103, 061301 (2008).

    Article  ADS  Google Scholar 

  28. G. Yang, B. Kim, K. Kim, J. W. Han, and J. Kim, RSC Adv. 5, 31861 (2015).

  29. C.-H. Chuang, S. C. Ray, D. Mazumder, S. Sharma, A. Ganguly, P. Papakonstantinou, J.-W. Chiou, H.‑M. Tsai, H.-W. Shiu, C.-H. Chen, H.-J. Lin, J. Guo, and W.-F. Pong, Sci. Rep. 7, 42235 (2017).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was conducted under state assignment for the Omsk Scientific Center (Siberian Branch, Russian Academy of Sciences) in accordance with the Program of Fundamental Research of National Academies of Sciences for 2013–2020 (project no. II.9.2.1, state registration no. АААА-А17-117041210227-8) and was supported in part by the Russian Foundation for Basic Research, project nos. 18-32-00233 mol_a (examination of the structure of MWCNTs irradiated by argon ions) and 16-08-00763 a (TEM studies).

The authors wish to thank Yu.A. Sten’kin for synthesizing the initial MWCNT samples, the management of the Helmholtz-Zentrum Berlin für Materialien und Energie and coordinators of the Russian–German beamline at BESSY II (Berlin, Germany), and the management of the Omsk Shared Use Center (Siberian Branch, Russian Academy of Sciences) for providing the equipment for TEM studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Korusenko.

Additional information

Translated by D. Safin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korusenko, P.M., Nesov, S.N., Povoroznyuk, S.N. et al. Modifying the Structure of Multiwalled Carbon Nanotubes with Continuous and Pulsed Ion Beams. Phys. Solid State 60, 2616–2622 (2018). https://doi.org/10.1134/S106378341812017X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378341812017X

Navigation