Skip to main content
Log in

Influence of a Nitrogen Admixture on the Value and Radial Profile of the Metastable Argon Atom Density in a DC Glow Discharge in Argon

  • LOW-TEMPERATURE PLASMA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Results of measurements of the value and radial profile of the density of Ar(3P2) metastables in a dc discharge in pure argon and Ar + 0.1%N2 and Ar + 1%N2 mixtures are presented. The electric field strength in the positive column of the discharge was also measured. The experiments were performed in a 2‑cm-radius discharge tube at gas pressures of 1, 7, and 60 Torr and discharge currents in the range of 10–50 mA. It is found that, at a pressure of 60 Torr, a nitrogen admixture to argon leads to a significant decrease in the electric field strength in the diffuse discharge, while at P = 1 Torr, in contrast, the electric field increases substantially. The degree to which the nitrogen admixture affects the density of Ar(3P2) atoms on the discharge tube axis also depends on the gas pressure. At a pressure of 60 Torr, the Ar(3P2) density decreases substantially (by three orders of magnitude for the 1%N2 admixture and 1.5 orders of magnitude for the 0.1%N2 admixture), while at a pressure of 1 Torr, the Ar(3P2) densities in pure argon and in Ar + N2 mixtures differ less than twice. It is also shown that, at all gas pressures under study, a nitrogen admixture to argon leads to the broadening of the radial profile of the Ar(3P2) density. The experiments were accompanied by numerical and theoretical studies. For pure argon, the calculations were performed in a one-dimensional (along the tube radius) discharge model, while for the Ar + 1%N2 mixture, in a zero-dimensional model, which allows one to calculate the plasma parameters on the tube axis. The calculated results were used to qualitatively explain the experimentally observed effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. F. Tochikubo, Z. L. Petrović, N. Nakano, and T. Makabe, Jpn. J. Appl. Phys. 33, 4271 (1994).

    Article  ADS  Google Scholar 

  2. M. Fiebrandt, B. Hillebrand, S. Spiekermeier, N. Bibinov, M. Boke, and P. Awakowicz, J. Phys. D 50, 355202 (2017).

    Article  Google Scholar 

  3. N. Britun, M. Gaillard, A. Ricard, Y. M. Kim, K. S. Kim, and J. G. Han, J. Phys. D 40, 1022 (2007).

    Article  ADS  Google Scholar 

  4. M. Moravej, X. Yang, M. Barankin, J. Penelon, S. E. Babayan, and R. F. Hicks, Plasma Sources Sci. Technol. 15, 204 (2006).

    Article  ADS  Google Scholar 

  5. B. Fritsche, T. Chevolleau, J. Kourtev, A. Kolitsch, and W. Möller, Vacuum 69, 139 (2003).

    Article  ADS  Google Scholar 

  6. Y.-C. Kim, H.-C. Lee, Y.-S. Kim, and C.-W. Chung, Phys. Plasmas 22, 083512 (2015).

    Article  ADS  Google Scholar 

  7. P. A. Sá and J. Loureiro, J. Phys. D 30, 2320 (1997).

    Article  ADS  Google Scholar 

  8. J. Henriques, E. Tatarova, F. M. Dias, and C. M. Ferreira, J. Appl. Phys. 103, 103304 (2008).

    Article  ADS  Google Scholar 

  9. S. Hübner, E. Carbone, J. M. Palomares, and J. van der Mullen, Plasma Process. Polym. 11, 482 (2014).

    Article  Google Scholar 

  10. K. H. Becker, N. M. Masoud, K. E. Martus, and K. H. Schoenbach, Eur. Phys. J. D 35, 279 (2005).

    Article  ADS  Google Scholar 

  11. A. Barkhordari, A. Ganjovi, I. Mirzaei, A. Falahat, and M. N. Rostami Ravari, J. Theor. Appl. Phys. 11, 301 (2017).

    Article  ADS  Google Scholar 

  12. N. Masoud, K. Martus, and K. Becker, J. Phys. D 38, 1674 (2005).

    Article  ADS  Google Scholar 

  13. J. A. Bravo, R. Rincón, J. Muñoz, A. Sánchez, and M. D. Calzada, Plasma Chem. Plasma Process. 35, 993 (2015).

    Article  Google Scholar 

  14. T. Kimura, K. Akatsuka, and K. Ohe, J. Phys. D 27, 1664 (1994).

    Article  ADS  Google Scholar 

  15. Yu. Z. Ionikh, A. V. Meshchanov, F. B. Petrov, N. A. Dyatko, and A. P. Napartovich, Plasma Phys. Rep. 34, 867 (2008).

    Article  ADS  Google Scholar 

  16. Y. Z. Ionikh, N. A. Dyatko, A. V. Meshchanov, A. P. Napartovich, and F. B. Petrov, Plasma Sources Sci. Technol. 21, 055008 (2012).

    Article  ADS  Google Scholar 

  17. N. A. Dyatko, Yu. Z. Ionikh, A. V. Meshchanov, A. P. Napartovich, and K. A. Barzilovich, Plasma Phys. Rep. 36, 1040 (2010).

    Article  ADS  Google Scholar 

  18. N. A. Dyatko, Y. Z. Ionikh, A. V. Meshchanov, and A. P. Napartovich, J. Phys. D 46, 355202 (2013).

    Article  Google Scholar 

  19. L. M. Isola, M. López, J. M. Cruceño, and B. J. Gó-mez, Plasma Sources Sci. Technol. 23, 015014 (2014).

    Article  ADS  Google Scholar 

  20. P. G. Reyes, C. Torres, and H. Martinez, Radiat. Eff. Defects Solids 169, 285 (2014).

    Article  ADS  Google Scholar 

  21. V. A. Zhovtyansky and O. V. Anisimova, Ukr. J. Phys. 59, 1155 (2014).

    Article  Google Scholar 

  22. A. Bogaerts, Spectrochim. Acta B 64, 126 (2009).

    Article  ADS  Google Scholar 

  23. G. P. Jackson and F. L. King, Spectrochim. Acta B 58, 185 (2003).

    Article  ADS  Google Scholar 

  24. N. A. Dyatko, Yu. Z. Ionikh, A. V. Meshchanov, and A. P. Napartovich, Plasma Phys. Rep. 44, 334 (2018).

    Article  ADS  Google Scholar 

  25. A. Qayyum, S. Zeb, M. A. Naveed, N. U. Rehman, S. A. Ghauri, and M. Zakaullah, J. Quant. Spectrosc. Radiat. Transfer 107, 361 (2007).

    Article  ADS  Google Scholar 

  26. E. H. Lock, Tz. B. Petrova, G. M. Petrov, D. R. Boris, and S. G. Walton, Phys. Plasmas 23, 043518 (2016).

    Article  ADS  Google Scholar 

  27. G. M. Grigorian, N. A. Dyatko, and I. V. Kochetov, Phys. Plasmas 24, 073503 (2017).

    Article  ADS  Google Scholar 

  28. G. M. Grigorian, N. A. Dyatko, and I. V. Kochetov, J. Phys. D 48, 445201 (2015).

    Article  ADS  Google Scholar 

  29. N. A. Dyatko, Y. Z. Ionikh, I. V. Kochetov, D. L. Marinov, A. V. Meschanov, A. P. Napartovich, F. B. Petrov, and S. A. Starostin, J. Phys. D 41, 055204 (2008).

    Article  ADS  Google Scholar 

  30. E. A. Bogdanov, A. A. Kudryavtsev, L. D. Tsendin, R. R. Arslanbekov, V. I. Kolobov, and V. V. Kudryavtsev, Tech. Phys. 49, 698 (2004).

    Article  Google Scholar 

  31. N. A. Dyatko, I. V. Kochetov, and A. P. Napartovich, Plasma Sources Sci. Technol. 23, 043001 (2014).

    Article  ADS  Google Scholar 

  32. E. A. Bogdanov, A. A. Kudryavtsev, L. D. Tsendin, R. R. Arslanbekov, and V. I. Kolobov, Tech. Phys. 49, 849 (2004).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research, project no. 16-02-00861-a.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. A. Dyatko or I. V. Kochetov.

Additional information

Translated by M. Samokhina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grigorian, G.M., Dyatko, N.A. & Kochetov, I.V. Influence of a Nitrogen Admixture on the Value and Radial Profile of the Metastable Argon Atom Density in a DC Glow Discharge in Argon. Plasma Phys. Rep. 44, 1154–1163 (2018). https://doi.org/10.1134/S1063780X18120036

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X18120036

Navigation