Skip to main content
Log in

Electrooptical effect in the plasmon structure glass–In2O3: Sn–ferroelectric–Al with a subwavelength grating

  • Order, Disorder, and Phase Transition in Condensed System
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The spectral features of the electrooptical effect, in which an applied voltage changes the refractive index of a ferroelectric copolymer, are studied. Three nanostructures are investigated: two nanostructures play an auxiliary role, and the basic structure consists of a glass substrate, a transparent ITO (In2O3: Sn) layer, active copolymer layer, and an Al layer with a nanograting. This grating with a period of 400 nm meets the conditions of excitation of plasmon resonances. The light transmission coefficients of all structures are analyzed in the spectral range 400–900 nm. The transmission spectra have two characteristic plasmon dips, one of which is related to the copolymer–ITO interface and the other, to the copolymer–Al interface. The aluminum and ITO layers play the role of electrodes, which supply voltage pulses (from 0 to 15 V) to the copolymer layer. When studying the electrooptical effect, we detected spectral shifts in plasmon resonance bands when the amplitudes of both positive and negative voltage pulses (quadratic effect) increase. These shifts change the effective refractive indices (n eff) of the structural elements, reaching the minimum negative increment Δeff =–0.06.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. L. Brongersma and V. M. Shalaev, Science 328, 440 (2010).

    Article  ADS  Google Scholar 

  2. G. V. Naik, V. M. Shalaev, and A. Boltasseva, Adv. Mater. 25, 3264 (2013).

    Article  Google Scholar 

  3. S. Jahani and Z. Jacob, Nat. Nanotech. 11, 23 (2016).

    Article  ADS  Google Scholar 

  4. H. Raether, Surface Plasmons (Springer, Berlin, 1988).

    Google Scholar 

  5. W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003).

    Article  ADS  Google Scholar 

  6. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, et al., Nature 391, 667 (1998).

    Article  ADS  Google Scholar 

  7. J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, Nano Lett. 9, 897 (2009).

    Article  ADS  Google Scholar 

  8. F. Ren, M. Li, Q. Gao, et al., Opt. Commun. 352, 116 (2015).

    Article  ADS  Google Scholar 

  9. M. J. Dicken, L. A. Sweatlock, D. Pacifici, et al., Nano Lett. 8, 4048 (2008).

    Article  ADS  Google Scholar 

  10. S. W. Liu and M. Xiao, Appl. Phys. Lett. 88, 143512 (2006).

    Article  ADS  Google Scholar 

  11. F.-F. Ren, K.-W. Ang, J. Song, et al., Appl. Phys. Lett. 97, 191102 (2010).

    Article  ADS  Google Scholar 

  12. B. Y. Zheng, Y. Wang, P. Nordlander, and N. J. Halas, Adv. Mater. 26, 6318 (2014).

    Article  Google Scholar 

  13. M. A. Noginov, L. Gu, J. Livenere, et al., Appl. Phys. Lett. 99, 021101 (2011).

    Article  ADS  Google Scholar 

  14. J. Frigerio, P. Chaisakul, D. Marris-Morini, et al., Appl. Phys. Lett. 102, 061102 (2013).

    Article  ADS  Google Scholar 

  15. T. Furukawa, Phase Trans. 18, 143 (1989).

    Article  Google Scholar 

  16. Yu. A. Draginda, S. G. Yudin, V. V. Lazarev, S. V. Yablonskii, and S. P. Palto, Crystallogr. Rep. 57, 421 (2012).

    Article  ADS  Google Scholar 

  17. A. V. Bune, V. M. Fridkin, S. Ducharme, et al., Nature 391, 874 (1998).

    Article  ADS  Google Scholar 

  18. M. Bai, A. V. Sorikin, D. W. Thomson, et al., J. Appl. Phys. 95, 3372 (2004).

    Article  ADS  Google Scholar 

  19. Y. X. Li, L. Yan, R. P. Shrestha, et al., Thin Solid Films 513, 283 (2006).

    Article  ADS  Google Scholar 

  20. L. M. Blinov, V. V. Lazarev, S. P. Palto, and S. G. Yudin, J. Exp. Theor. Phys. 114, 691 (2012).

    Article  ADS  Google Scholar 

  21. H. Fujiwara and M. Kondo, Phys. Rev. B 71, 075109 (2005).

    Article  ADS  Google Scholar 

  22. O. Tuna, Y. Selamet, G. Aygun, and L. Ozyuzer, J. Phys. D 43, 055402 (2010).

    Article  ADS  Google Scholar 

  23. A. D. Rakić, A. B. Djurišć, J. M. Elazar, and M. L. Majewski, Appl. Opt. 37, 5271 (1998).

    Article  ADS  Google Scholar 

  24. L. M. Blinov, V. V. Lazarev, S. G. Yudin, V. V. Artemov, S. P. Palto, and M. V. Gorkunov, J. Exp. Theor. Phys. 123, 778 (2016).

    Article  ADS  Google Scholar 

  25. S. Kazaoui, N. Minami, Y. Tanabe, et al., Phys. Rev. B 58, 7689 (1998).

    Article  ADS  Google Scholar 

  26. L. M. Blinov, V. V. Lazarev, S. G. Yudin, and S. P. Palto, Opt. Spectrosc. 120, 300 (2016).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Blinov.

Additional information

Original Russian Text © L.M. Blinov, V.V. Lazarev, S.G. Yudin, V.V. Artemov, M.V. Gorkunov, S.P. Palto, 2017, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2017, Vol. 152, No. 3, pp. 552–559.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blinov, L.M., Lazarev, V.V., Yudin, S.G. et al. Electrooptical effect in the plasmon structure glass–In2O3: Sn–ferroelectric–Al with a subwavelength grating. J. Exp. Theor. Phys. 125, 469–475 (2017). https://doi.org/10.1134/S1063776117080015

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776117080015

Navigation