Skip to main content
Log in

Wear of electroplated gold-based coatings

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

Deformation and fracture of electroplated Au-Ni coatings subjected to tribological testing under dry conditions were studied. Wear of the coatings is shown to result from macroscopic contact interaction of the specimen with the counterbody, and from abrasive action of microasperities on the counterbody surface and wear particles. The formation mechanisms of wear particles and a transfer layer were investigated, and their contribution to wear of the electroplated Au-Ni coatings was demonstrated. The significance of shear stresses arising at the coating/sublayer interface in coating fracture was substantiated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Electrical Contacts: Principles and Applications, Slade, P.G., Ed., Boca Raton: CRC Press, 2013.

  2. Braunovic, M., Myshkin, N.K., and Konchits, V.V., Electrical Contacts: Fundamentals, Applications and Technology, Boca Raton: CRC Press, 2006.

    Book  Google Scholar 

  3. Okinaka, Y. and Hoshino, M., Some Recent Topics in Gold Plating for Electronics Applications, Gold Bull., 1998, vol. 31, pp. 3–13.

    Article  Google Scholar 

  4. Edgar, J.A. and Cortie, M.B., Nanotechnology Applications of Gold, Gold: Science and Applications, Corti, C. and Holliday, R., Eds., Boca Raton: CRC Press, 2010.

  5. Antler, M. and Drozdowicz, M.H., Wear of Gold Electrodeposits: Effect of Substrate and of Nickel Underplate, Bell Syst. Tech. J., 1979, vol. 58, no. 2, pp. 323–349.

    Article  Google Scholar 

  6. Antler, M., Tribological Properties of Gold for Electric Contacts, IEEE Trans. Parts Hybr. Pack., 1973, vol. 9, no. 1, pp. 4–14.

    Article  Google Scholar 

  7. Liljestrand, L.G., Sjogren, L., Revay, L.B., and Asthner, B., Wear Resistance of Electroplated Nickel-Hardened Gold, IEEE Trans. Compon. Hybr. Manuf. Tech., 1985, vol. 8, no. 1, pp. 123–128.

    Article  Google Scholar 

  8. Willing, H., Galvanotechnische Abscheidung von Gold-Eine Übersicht-Teil 8, Galvanotechnik, 2013, vol. 111, no. 1, pp. 44–57.

    Google Scholar 

  9. Shugurov, A.P., Panin, A.V., Lyazgin, A.O., and Shesterikov, E.V., Production of Electroplated Au-Ni Coatings by the Method of Pulse Electrolytic Deposition, Perspekt. Mater., 2013, no. 9, pp. 59–69.

    Google Scholar 

  10. Smits, F.M., Measurement of Sheet Resistivities with the Four-Point Probe, Bell Syst. Tech. J., 1958, vol. 37, no. 3, pp. 711–718.

    Article  Google Scholar 

  11. Johnson, K.L., Contact Mechanics, Cambridge: Cambridge University Press, 1987.

    Google Scholar 

  12. Morozov, E.N. and Zenin M.V., Contact Problems of Fracture Mechanics, Moscow: Mashinostroenie, 1999.

    Google Scholar 

  13. Conway, H.D., Lee, H.C., and Bayer, R.G., The Impact between a Rigid Sphere and a Thin Layer, J. Appl. Mech., 1970, vol. 37, no. 1, pp. 159–162.

    Article  ADS  Google Scholar 

  14. Tabor, D., The Hardness of Metals, London: Oxford University Press, 1951.

    Google Scholar 

  15. Holmberg, K., Laukkanen, A., Ronkainen, H., Wallin, K., Vaijus, S., and Koskinen, J., Tribological Contact Analysis of a Rigid Ball Sliding on a Hard Coated Surface. Part I: Modelling Stresses and Strains, Surf. Coat. Tech., 2006, vol. 200, pp. 3793–3809.

    Article  Google Scholar 

  16. Maslov, E.N., Theory of Grinding of Materials, Moscow: Mashinostroenie, 1974.

    Google Scholar 

  17. Xie, Y. and Hawthorne, H.M., On the Possibility of Evaluating the Resistance of Materials to Wear by Ploughing Using a Scratch Method, Wear, 2000, vol. 240, no. 1, pp. 65–71.

    Article  Google Scholar 

  18. Vencl, A., Manic, N., Popovic, V., and Mrdak, M., Possibility of the Abrasive Wear Resistance Determination with Scratch Tester, Tribol. Lett., 2010, vol. 37, no. 3, pp. 591–604.

    Article  Google Scholar 

  19. Fortes, M.A., Collazo, R., and Vaz, M.F., Contact Mechanics of Cellular Solids, Wear, 1999, vol. 230, pp. 1–10.

    Article  Google Scholar 

  20. Antler, M., Sliding Wear of Metallic Contacts, IEEE Trans. Compon. Hybr. Manuf. Tech., 1981, vol. 4, no. 1, pp. 15–29.

    Article  Google Scholar 

  21. Shugurov, A.R., Panin, A.V., and Shesterikov, E.V., Sclerometric Study of Galvanic AuNi and AuCo Coatings, Tech. Phys. Lett., 2011, vol. 37, vol. 3, pp. 223–225.

    Article  ADS  Google Scholar 

  22. Dmitriev, A.I., Kuznetsov, V.P., Nikonov, A.Yu., Smolin, I.Yu., and Psakhie, S.G., Modeling ofNanostructuring Burnishing on Different Scales, Phys. Mesomech., 2014, vol. 17, no. 4, pp. 6–13.

    Article  Google Scholar 

  23. Panin, V.E. and Egorushkin, V.E., Physical Mesomechanics and Nonequilibrium Thermodynamics as a Methodological Basis for Nanomaterials Science, Phys. Mesomech., 2009, vol. 12, no. 5–6, pp. 204–220.

    Article  Google Scholar 

  24. Panin, V.E. and Egorushkin, V.E., Physical Mesomechanics of Crystal Structure Refinement upon Severe Plastic Deformation, Phys. Mesomech., 2008, vol. 11, no. 5–6, pp. 5–16.

    Article  Google Scholar 

  25. Panin, V.E., Kolubaev, A.V., Slosman, A.I., Tarasov, S.Yu., Panin, S.V., and Sharkeev, Yu.P., The Friction Pair Wear as a Problem of Physical Mesomechanics, Phys. Mesomech., 2000, vol. 3, no. 1, pp. 67–74.

    Google Scholar 

  26. Antler, M., Processes of Metal Transfer and Wear, Wear, 1964, vol. 7, pp. 181–203.

    Article  Google Scholar 

  27. Cocks, M., Shearing of Junctions between Metal Surfaces, Wear, 1966, vol. 9, pp. 320–328.

    Article  Google Scholar 

  28. Takagi, R. and Liu, T., The Lubrication of Steel by Electroplated Gold, ASLE Trans., 1967, vol. 10, pp. 115–123.

    Article  Google Scholar 

  29. Tian, H., Saka, N., and Rabinowicz, E., Friction and Failure of Electroplated Sliding Contacts, Wear, 1991, vol. 142, pp. 57–85.

    Article  Google Scholar 

  30. McCook, N.L., Burris, D.L., Kim, N.H., and Sawyer, W.G., Cumulative Damage Modeling of Solid Lubricant Coatings that Experience Wear and Interfacial Fatigue, Wear, 2007, vol. 262, pp. 1490–1495.

    Article  Google Scholar 

  31. Misra, A., Hirth, J.P., and Hoagland, R.G., Length-Scale-Dependent Deformation Mechanisms in Incoherent Metallic Multilayered Composites, Acta Mater., 2005, vol. 53, no. 18, pp. 4817–4824.

    Article  Google Scholar 

  32. Hoagland, R.G., Hirth, J.P., and Misra, A., On the Role of Weak Interfaces in Blocking Slip in Nanoscale Layered Composites, Philos. Mag., 2006, vol. 86, no. 23, pp. 3537–3558.

    Article  ADS  Google Scholar 

  33. Wang, J., Hoagland, R.G., and Hirth, J.P., Atomistic Modeling of the Interaction of Glide Dislocations with Weak Interfaces, Acta Mater., 2008, vol. 56, pp. 5685–5693.

    Article  Google Scholar 

  34. Zbib, H.M., Overman, C.T., Akasheh, F., and Bahr, D., Analysis of Plastic Deformation in Nanoscale Metallic Multilayers with Coherent and Incoherent Interfaces, Int. J. Plast., 2011, vol. 27, pp. 1618–1639.

    Article  MATH  Google Scholar 

  35. Zener, C., The Micro-Mechanism of Fracture, Fracturing of Metals, Johnson, F., Roop, W.P., and Bayles, R.T., Eds., Cleveland: American Society of Metals, 1948, pp. 3–31.

  36. Stroh, A.N., The Formation of Cracks as a Result of Plastic Flow. I, Proc. R. Soc. Lond. A, 1954, vol. 223, pp. 404–414.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Stroh, A.N., The Formation of Cracks as a Result of Plastic Flow. II, Proc. R. Soc. Lond. A, 1955, vol. 232, pp. 548–560.

    Article  ADS  MATH  Google Scholar 

  38. Cherepanov, G.P., Interface Microcrack Nucleation, J. Mech. Phys. Solids, 1994, vol. 42, pp. 665–680.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Fan, H., Interfacial Zener-Stroh Crack, J. Appl. Mech., 1994, vol. 61, pp. 829–834.

    Article  ADS  MATH  Google Scholar 

  40. Xiao, Z.M., Zhao, J.F., and Fan, H., Zener-Stroh Crack at the Interface of Multi-Layered Structures, Int. J. Fracture, 2005, vol. 133, pp. 355–369.

    Article  MATH  Google Scholar 

  41. Stroh, A.N., A Theory of the Fracture of Metals, Adv. Phys., 1957, vol. 6, no. 24, pp. 418–465.

    Article  ADS  Google Scholar 

  42. Rabinowicz, E., Friction and Wear of Materials, New York: Wiley-Interscience, 1995.

    Google Scholar 

  43. Tyson, W.R. and Miller, W.A., Surface Free Energies of Solid Metals. Estimation from Liquid Surface Tension Measurements, Surf. Sci., 1977, vol. 62, pp. 267–276.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Shugurov.

Additional information

Original Russian Text © A.R. Shugurov, A. V. Panin, A.O. Lyazgin, E. V. Shesterikov, 2015, published in Fizicheskaya Mezomekhanika, 2015, Vol. 18, No. 3, pp. 58-70.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shugurov, A.R., Panin, A.V., Lyazgin, A.O. et al. Wear of electroplated gold-based coatings. Phys Mesomech 19, 407–419 (2016). https://doi.org/10.1134/S102995991604007X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102995991604007X

Keywords

Navigation