Skip to main content
Log in

Experimental Modeling of C0-Forming Processes Involving Cohenite and CO2-Fluid in a Silicate Mantle

  • GEOCHEMISTRY
  • Published:
Doklady Earth Sciences Aims and scope Submit manuscript

Abstract

Experimental studies were performed in the Fe3C–SiO2–(Mg,Ca)CO3 system (6.3 GPа, 1100–1500°C, 20–40 h). It is established that the carbide–oxide–carbonate interaction leads to the formation of ferrosilite, fayalite, graphite, and cohenite (1100 and 1200°С), as well as a Fe–C melt (1300°С). It is determined that the main processes in the system are decarbonation, redox-reactions of cohenite and a CO2-fluid, extraction of carbon from carbide, and crystallization of metastable graphite (± diamond growth), as well as the formation of ferriferous silicates. The interaction studied can be considered as a simplified model of the processes that occur during the subduction of oxidized crustal material to reduced mantle rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig 2.

Similar content being viewed by others

REFERENCES

  1. A. Rohrbach and M. W. Schmidt, Nature 472, 209–212 (2011).

    Article  Google Scholar 

  2. B. Marty, Earth Planet. Sci. Lett. 313–314, 56–66 (2012).

    Article  Google Scholar 

  3. Y. N. Palyanov, Y. V. Bataleva, Y. M. Borzdov, et al., Proc. Natl. Acad. Sci. U. S. A. 110 (51), 20408–20413 (2013).

    Article  Google Scholar 

  4. D. E. Jacob, A. Kronz, and K. S. Viljoen, Contrib. Mineral. Petrol. 146 (5), 566–576 (2004).

    Article  Google Scholar 

  5. Yu. V. Bataleva, Yu. N. Pal’yanov, Yu. M. Borzdov, et al., Russ. Geol. Geophys. 57 (1), 176–189 (2016).

    Article  Google Scholar 

  6. R. W. Luth, in Reference Module in Earth Systems and Environmental Sciences, Treatise on Geochemistry (Elsevier, 2014), pp. 355–391.

    Google Scholar 

  7. I. D. Ryabchikov, Dokl. Earth Sci. 429 (8), 1346–1349 (2009).

    Article  Google Scholar 

  8. L. N. Kogarko, Geochem. Int. 44 (1), 3–10 (2006).

    Article  Google Scholar 

  9. N. V. Sobolev, E. S. Efimova, and L. N. Pospelova, Geol. Geofiz., No. 12, 25–28 (1981).

  10. T. Stachel, J. W. Harris, and G. P. Brey, Contrib. Mineral. Petrol. 132, 34–47 (1998).

    Article  Google Scholar 

  11. M. Schrauder and O. Navon, Nature 365, 42–44 (1993).

    Article  Google Scholar 

  12. Y. V. Bataleva, Y. N. Palyanov, Y. M. Borzdov, et al., Lithos 286–287, 151–161 (2017).

    Article  Google Scholar 

  13. Y. N. Palyanov, Y. M. Borzdov, A. F. Khokhryakov, et al., Cryst. Growth Des. 10, 3169–3175 (2010).

    Article  Google Scholar 

  14. Yu. N. Pal’yanov, A. G. Sokol, A. F. Khokhryakov, et al., Dokl. Earth Sci. A 375 (9), 1395–1398 (2000).

    Google Scholar 

  15. Y. N. Palyanov, A. F. Khokhryakov, Y. M. Borzdov, et al., Cryst. Growth Des. 13 (12), 5411–5419 (2013).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research (project no. 16–35–60024) and was performed as part of a State Assignment (project no. 0330–2016–0007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Bataleva.

Additional information

Translated by L. Mukhortova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bataleva, Y.V., Palyanov, Y.N., Borzdov, Y.M. et al. Experimental Modeling of C0-Forming Processes Involving Cohenite and CO2-Fluid in a Silicate Mantle. Dokl. Earth Sc. 483, 1427–1430 (2018). https://doi.org/10.1134/S1028334X18110016

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1028334X18110016

Navigation