Skip to main content
Log in

Polydimethylsilalkylene-dimethylsiloxanes as advanced membrane materials for thermopervaporative recovery of oxygenates from aqueous reaction media

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

Polydimethylsildimethylene-dimethylsiloxane (PSDMS) and polydimethylsiltrimethylenedimethylsiloxane (PSTMS) have been first studied as pervaporation membrane materials for the recovery of butanol from aqueous media. New synthesis procedures that make it possible to obtain the monomers 2,2,5,5-tetramethyl-1-oxa-2,5-disilacyclopentane (1) and 2,2,6,6-tetramethyl-1-oxa-2,6-disilacyclohexane (2) in high yields and with high purity required for subsequent polymerization have been developed. The optimum concentration of the crosslinking agent (tetraethoxysilane (TEOS)) of 5% has been found, which provides the maximum degree of crosslinking without sacrificing high values of separation factor and permeate flux. It has been shown that the permselectivity of PSDMS or PSTMS for butanol–water is higher by a factor of 1.5 or- almost 2, respectively, than the selectivity of the industrial membrane polymer, PDMS, at comparable values of the butanol permeability coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. TR TS (Technical Regulations of the Customs Union) 013-2011: About Requirements to Motor and Aviation Gasoline, Diesel and Marine Fuel, Jet Fuel, and Fuel Oil.

  2. Degrémont, Mémento technique de l’eau, 2 vols., 10th Ed. (Lavoisier, Paris, 2005), Vol. 1.

  3. Government Decree of April 15, 2014 No 321 On approval of the Russian State Program “Energy Efficiency and Energy Development” (as amended on December 7, 2015).

  4. H. J. Huang and S. Ramaswamy, Sep. Purif. Technol. 132, 513 (2014).

    Article  CAS  Google Scholar 

  5. L. M. Vane, J. Chem. Technol. Biotechnol. 80, 603 (2005).

  6. G. Liu, W. Wei, and W. Jin, ACS Sustain. Chem. Eng. 2, 546 (2013).

    Article  Google Scholar 

  7. I. L. Borisov, N. V. Ushakov, V. V. Volkov, and E. Sh., Finkel’shtein, Izv. Akad. Nauk, Ser. Khim., No. 4, 1020 (2016).

    Google Scholar 

  8. W. A. Piccoli, G. G. Haberland, and R. L. Merker, J. Am. Chem. Soc. 82, 1883 (1960).

    Article  CAS  Google Scholar 

  9. US Patent No. 3 041 362 (1962).

  10. D. Wittenberg and H. Gilman, J. Am. Chem. Soc. 74, 5091 (1952).

    Article  Google Scholar 

  11. C. R. Hauser and C. R. Hance, J. Am. Chem. Soc. 80, 2677 (1958).

    Article  Google Scholar 

  12. G. Greber and L. Metzinger, Makromol. Chem. 39, 226 (1960).

    Article  CAS  Google Scholar 

  13. L. V. Interrante, Q. Shen, and J. Li, Macromolecules 34, 1545 (2001).

    Article  CAS  Google Scholar 

  14. M. Samara and D. A. Loy, Am. Chem. Soc. Polym. Prepr., Polym. Chem. 39, 599 (1998).

    CAS  Google Scholar 

  15. L. Li, Z. Xiao, S. Tan, et al., J. Membr. Sci. 243, 177 (2004).

    Article  CAS  Google Scholar 

  16. I. L. Borisov and V. V. Volkov, Sep. Purif. Technol. 146, 33 (2015).

    Article  CAS  Google Scholar 

  17. J. Pump, E. G. Rochow, and U. Wannagat, Angew. Chem. 75, 374 (1963).

    Article  CAS  Google Scholar 

  18. J. J. Eisch and G. R. Hask, J. Org. Chem. 29, 254 (1964).

    Article  CAS  Google Scholar 

  19. Q. T. Nguyen, Z. Bendjama, R. Clément, and Z. Ping, Phys. Chem. Chem. Phys. 2, 395 (2000).

    Article  Google Scholar 

  20. S. A. Stern, V. M. Shah, and B. J. Hardy, J. Polym. Sci., Part B: Polym. Phys. 25, 1263 (1987).

    Article  CAS  Google Scholar 

  21. I. L. Borisov, V. V. Volkov, V. A. Kirsh, and V. I. Roldugin, Pet. Chem. 51, 542 (2011).

    Article  CAS  Google Scholar 

  22. R. W. Baker, J. G. Wijmans, and Y. Huang, J. Membr. Sci. 348, 346 (2010).

    Article  CAS  Google Scholar 

  23. W. Wei and W. Jin, ACS Sustain. Chem. Eng. 2, 546 (2013).

    Google Scholar 

  24. M. H. V. Mulder, Basic Principles of Membrane Technology (Kluwer Academic, Dordrecht, 1990).

    Google Scholar 

  25. S. F. Li, F. Qin, P. Y. Qin, et al., Green Chem. 15, 2180 (2013).

    Article  CAS  Google Scholar 

  26. Z. Dong, G. Liu, S. Liu, et al., J. Membr. Sci. 450, 38 (2014).

    Article  CAS  Google Scholar 

  27. J. Niemisto, W. Kujawski, and R. L. Keiski, J. Membr. Sci. 434, 55, (2013).

    Article  CAS  Google Scholar 

  28. A. Kujawska, J. Kujawski, M. Bryjak, and W. Kujawski, Chem. Eng. Process.: Proc. Intens. 94, 62 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. L. Borisov.

Additional information

Original Russian Text © I.L. Borisov, N.V. Ushakov, V.V. Volkov, E.Sh. Finkel’shtein, 2016, published in Neftekhimiya, 2016, Vol. 56, No. 6, pp. 578–583.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borisov, I.L., Ushakov, N.V., Volkov, V.V. et al. Polydimethylsilalkylene-dimethylsiloxanes as advanced membrane materials for thermopervaporative recovery of oxygenates from aqueous reaction media. Pet. Chem. 56, 798–804 (2016). https://doi.org/10.1134/S0965544116090024

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544116090024

Keywords

Navigation