Skip to main content
Log in

Structure, Magnetic and Photochemical Properties of Fe–TiO2 Nanoparticles Stabilized in Al2O3 Matrix

  • Synthesis and Properties of Inorganic Compounds
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Fe–TiO2 nanoparticles with Fe concentration from 0.24 to 5 wt % were synthesized in a Al2O3 matrix through multiple impregnations from organic solutions of Ti n-butoxide and Fe acetylacetonate. Microstructure, morphology and magnetic properties of the composites were studied using X-ray analysis, transmission electron microscopy, energy-dispersive analysis, Mössbauer spectroscopy and magnetic susceptibility. It was shown that the deposition of the solution with low concentration of Ti n-butoxide leads to the formation of mostly extensive Fe–TiO2 films with a small fraction of individual Fe–TiO2 nanoparticles. On the contrary, the increase of Ti n-butoxide concentration results in the formation of a great number of individual Fe–TiO2 nanoparticles on Al2O3. The size of these particles increases from 2–3 nm to 5–8 nm with the increase of Fe content in the samples from 0.24 to 1.0 (wt %). Mössbauer spectroscopy revealed two types of magnetic ions. The first type of paramagnetic Fe3+ demonstrate spin–lattice relaxation properties while another one substitutes Ti4+ in the TiO2 structure thus forming Fe–TiO2 stabilized particles in the matrix. According to the magnetic data antiferromagnetic and ferromagnetic types of exchange spin coupling occur in Fe–TiO2/Al2O3 composites. The increase of Fe concentration in the composites from 1 to 5 wt % results in the narrowing of the TiO2 band gap from 3.2 to 2.7 eV and shifting the absorption edge in visual spectrum from 350–400 to 450–500 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. X. Chen and S. Mao, J. Chem. Rev. 107, 2891 (2007).

    Article  CAS  Google Scholar 

  2. A. Fujishima, T. N. Rao, and D. A. Tryk, J. Photochem. Photobiol. C: Photochem. Rev. 1, 1 (2001).

    Article  Google Scholar 

  3. A. Fujishima and K. Honda, J. Nature 238, 37 (1972).

    Article  CAS  Google Scholar 

  4. S. N. Frank and A. J. Bard, J. Phys. Chem. 81, 1484 (1977).

    Article  CAS  Google Scholar 

  5. S. N. Frank and A. J. Bard, J. Am. Chem. Soc. 99, 4667 (1977).

    Article  CAS  Google Scholar 

  6. R. Vinu and G. Madras, J. Ind. Inst. Sci. 90, 189 (2012).

    Google Scholar 

  7. Y. Paz, L. Luo, and L. Rabenberg, J. Mater. Res. 10, 2842 (1995).

    Article  CAS  Google Scholar 

  8. V. Romeas, P. Pichat, C. Guillard, et al., J. Ind. Eng. Chem. Res. 38, 3878 (1999).

    Article  CAS  Google Scholar 

  9. State-of-the-Art Report of the RILEM Technical Committee 194-TDP, Application of Titanium Dioxide Photocatalysis to Construction Materials, Ed. by Y. Ohama and D. Van Gemert (Springer, 2011), Vol.5.

  10. T. Matsunaga, R. Tomoda, T. Nakajima, et al., FEMS Microbiol. Lett. 29, 211 (1985).

    Article  CAS  Google Scholar 

  11. D. Mitoraj, A. Janczyk, M. Strus, et al., J. Photochem. Photobiol. Sci. 6, 642 (2007).

    Article  CAS  Google Scholar 

  12. R. Memming, Electron Transfer I: Photoinduced Charge Transfer Processes at Semiconductor Electrodes and Particles (Springer, Berlin/Heidelberg, 1994).

    Google Scholar 

  13. W. Choi, A. Termin, and M. R. Hoffman, J. Phys. Chem. 95, 13669 (1994).

    Article  Google Scholar 

  14. C. M. Wang, A. Heller, and H. Gerischer, J. Am. Chem. Soc. 13, 114 (1992).

    CAS  Google Scholar 

  15. H. Gnasaer, B. Huber, C. Ziegler, et al., Encyclopedia of Nanoscience and Nanotechnology ed, by H. S. Nalwa (American Scientific Publishers, Stevenson Ranch, 2004), Vol. 6, p. 505

    Google Scholar 

  16. D. A. Hanaor and C. C. Sorrell, J. Mater. Sci. 46, 855 (2011).

    Article  CAS  Google Scholar 

  17. S. T. Martin, A. T. Lee, and M. R. Hoffmann, J. Environ. Sci. Technol., 2567 (1995).

    Google Scholar 

  18. J. Lei, X. Li, W. Li, et al., J. Solid State Electrochem. 16, 625 (2012).

    Article  CAS  Google Scholar 

  19. P. K. Surolia, R. J. Tayade, and R. V. Jasra, J. Ind. Eng. Chem. Res. 46, 6196 (2007).

    Article  CAS  Google Scholar 

  20. J. Arana, O. G. Diaz, M. M. Saracho, et al., J. Appl. Catal. B: Env. 32, 49 (2001).

    Article  CAS  Google Scholar 

  21. J. A. Navio, G. Colon, M. I. Litter, et al., J. Mol. Catal. A: Chem. 106, 267 (1996).

    Article  CAS  Google Scholar 

  22. S. Wang, J. S. Lian, W. T. Xheng, et al., J. Appl. Surf. Sci. 263, 260 (2012).

    Article  CAS  Google Scholar 

  23. S. D. Delekar, H. M. Yadav, S. N. Achary, et al., J. Appl. Surf. Sci. 263, 536 (2012).

    Article  CAS  Google Scholar 

  24. Y. Yuan, Z. H. Ruan, X. Huang, et al., J. Catal. 348, 246 (2017).

    Article  CAS  Google Scholar 

  25. H. Moradi, A. Eshaghi, S. R. Hosseini, et al., J. Ultrason. Sonochem. 32, 314 (2016).

    Article  CAS  Google Scholar 

  26. C. Y. Wang, C. Bottcher, D. W. Bahmemann, et al., J. Mater. Chem. 13, 2322 (2003).

    Article  CAS  Google Scholar 

  27. M. V. Tsodikov, O. V. Bukhtenko, O. V. Ellert, et al., J. Mater. Sci. 30, 1078 (1995).

    Article  Google Scholar 

  28. Y. V. Maksimov, I. P. Suzdalev, M. V. Tsodikov, et al., J. Mol. Chem. A 105, 167 (1996).

    Article  CAS  Google Scholar 

  29. M. V. Tsodikov, O. G. Ellert, I. A. Petrunenko, et al., J. Sol-Gel Sci. Tech. 8, 213 (1997).

    Google Scholar 

  30. M. C. Hidalgo, C. Colon, J. A. Navio, et al., J. Catal. Today 128, 245 (2007).

    Article  CAS  Google Scholar 

  31. M. V. Tsodikov, T. N. Rostovshikova, V. V. Smirnova, et al., J. Catal. Today 105, 634 (2005).

    Article  CAS  Google Scholar 

  32. V. V. Kriventsov, D. I. Kochubey, C. Colon, et al., J. Phys. Scr. 115, 726 (2005).

    Google Scholar 

  33. S. A. Nikolaev, O. G. Ellert, Y. V. Maksimov, et al., J. Mater. Chem. Phys. 30, 1 (2016).

    Google Scholar 

  34. O. G. Ellert, I. A. Petrunenko, M. V. Tsodikov, et al., J. Mater. Chem. 6, 207 (1996).

    Article  CAS  Google Scholar 

  35. PDF-2, #46-1212]; [PDF-2, #47-1770; PDF-2, #86-1157.

  36. R. A. Buyanov and O. P. Krivoruchko, J. React. Kinet. Catal. Lett. 35, 293 (1987).

    Article  CAS  Google Scholar 

  37. J. F. Banfield, S. A. Weuch, H. Zhang, et al., J. Sci. 289, 752 (2000).

    Article  Google Scholar 

  38. G. K. Wertheim and J. P. Remeika, J. Phys. Lett. 10, 14 (1964).

    Article  CAS  Google Scholar 

  39. V. I. Goldanskii and R. H. Herber, in Chemical Application of Mössbauer Spectroscopy, Ed. by V. I. Goldanskii and R. H. Herber (Academic Press, New York, 1968).

  40. H. Mesenda and S. Gevurt, K. Dharuth-Ram, et al., J. Hyperfine Inter. 237, 40 (2016).

    Article  CAS  Google Scholar 

  41. A. K. Nayakl, M. Nicklas, S. Chadov, et al., J. Nat. Mater. 14, 679 (2015).

    Article  CAS  Google Scholar 

  42. J. Nogues, J. Sort, V. Langlas, et al., J. Phys. Rep. 422, 65 (2005).

    Article  Google Scholar 

  43. R. Mantovan, H. P. Gunnlaugsson, K. Johnston, et al., Adv. Electr. Mater. 1, 234 (2015).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. G. Ellert.

Additional information

The article is published in the original.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ellert, O.G., Nikolaev, S.A., Maslov, D.A. et al. Structure, Magnetic and Photochemical Properties of Fe–TiO2 Nanoparticles Stabilized in Al2O3 Matrix. Russ. J. Inorg. Chem. 63, 1403–1413 (2018). https://doi.org/10.1134/S0036023618110049

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023618110049

Keywords

Navigation