Skip to main content
Log in

Formal Kinetic Description of Photocatalytic Hydrogen Evolution from Ethanol Aqueous Solutions in the Presence of Sodium Hydroxide

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The dependences of the rate of the photocatalytic hydrogen production in ethanol aqueous solutions on the concentration of ethanol and sodium hydroxide on the 1% Pt/10% Ni(OH)2/Cd0.3Zn0.7S photocatalyst under visible light irradiation (λ = 450 nm) are studied. To describe kinetic data, the Langmuir–Hinshelwood equation was modified. An equation was proposed that reflects the dependence of the reaction rate on the concentration of NaOH, and an equation was derived for the first time that shows the dependence of the rate of photocatalytic hydrogen production from the concentrations of both reactants, ethanol and sodium hydroxide. The validity of the proposed equations was confirmed by their use for the description of the experimental data obtained in this work and reported earlier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Kozlova, E.A. and Parmon, V.N., Russ. Chem. Rev., 2017, vol. 86, no. 9, p. 870.

    Article  CAS  Google Scholar 

  2. Savinov, E.N., Cand. Sci. (Chem.) Dissertation, Novosibirsk: IC SB RAS, 1982.

  3. Savinov, E.N., Doct. Sci. (Chem.) Dissertation, Novosibirsk: IC SB RAS, 1993.

  4. Gruzdkov, Yu.A., Savinov, E.N., and Parmon, V.N., Khim. Vys. Energ., 1986, vol. 20, no. 5, p. 445.

    CAS  Google Scholar 

  5. Makhmadmurodov, A., Gruzdkov, Yu.A., Savinov, E.N., and Parmon, V.N., Kinet. Katal., 1986, vol. 27, no. 1, p. 133.

    CAS  Google Scholar 

  6. Gruzdkov, Yu.A., Savinov, E.N., and Parmon, V.N., Khim. Fiz., 1988, vol. 7, no. 1, p. 44.

    CAS  Google Scholar 

  7. Li, Y.X., Lu, G.X., and Li, S.B., Appl. Catal., A, 2001, vol. 214, p. 179.

  8. Vorontsov, A.V., Kozlova, E.A., Besov, A.S., Kozlov, D.V., Kiselev, S.A., and Safatov, A.S., Kinet. Catal., 2010, vol. 51, no. 6, p. 801.

    Article  CAS  Google Scholar 

  9. Chen, J., Lin, Sh., Yan, G., Yang, L., and Chen, X., Catal. Commun., 2008, vol. 9, p. 65.

    Article  CAS  Google Scholar 

  10. Malin, K.M., Spravochnik sernokislotchika (Sulfuric Acid Production Engineer Guide), Moscow: Khimiya, 1971.

    Google Scholar 

  11. Boreskov, G.K., Geterogennyi kataliz (Heterogeneous Catalysis), Moscow: Nauka, 1988.

    Google Scholar 

  12. Kozlov, D.V., Doct. Sci. Dissertation, Novosibirsk: IC SB RAS, 2015.

  13. Sabate, J., Cervera-March, S., Simarro, R., and Gimenez, J., Chem. Eng. Sci., 1990, vol. 45, p. 3089.

    Article  CAS  Google Scholar 

  14. Markovskaya, D.V., Cherepanova, S.V., Saraev, A.A., Gerasimov, E.Yu., and Kozlova, E.A., Chem. Eng. J., 2015, vol. 262, p. 146.

    Article  CAS  Google Scholar 

  15. Sadovnikov, S.I., Kozlova, E.A., Gerasimov, E.Yu., Rempel, A.A., and Gusev, A.I., Int. J. Hydrogen Energy, 2017, vol. 42, p. 25258.

    Article  CAS  Google Scholar 

  16. Turchi, G.S. and Ollis, D.F., J. Catal., 1990, vol. 122, p. 178.

    Article  CAS  Google Scholar 

  17. Santacesaria, E., Catal. Today, 1997, vol. 34, p. 393.

    Article  CAS  Google Scholar 

  18. Lin, W.C., Yang, W.D., Huang, I.L., Wu, T.S., and Chung, Z.J., Energy Fuels, 2009, vol. 23, p. 2192.

    Article  CAS  Google Scholar 

  19. Patsoura, A., Kondarides, D.I., and Verykios, X.E., Catal. Today, 2007, vol. 124, p. 94.

    Article  CAS  Google Scholar 

  20. Fujita, S.I., Kawamori, H., Honda, D., Youshida, H., and Arai, M., Appl. Catal., B, 2016, vol. 181, p. 818.

    Article  CAS  Google Scholar 

  21. Fu, X., Long, J., Wang, X., Leung, D.Y.C., Ding, Z., Wu, L., Zhang, Z., Li, Z., and Fu, X., Int. J. Hydrogen Energy, 2008, vol. 33, p. 6484.

    Article  CAS  Google Scholar 

  22. Zheng, X.J., Wei, Y.J., Wei, L F., Xie, B., and Wei, M.B., Int. J. Hydrogen Energy, 2010, vol. 35, p. 117094.

    Google Scholar 

  23. Chowdhury, P., Gomaa, H., and Ray, A.K., Chemosphere, 2015, vol. 121, p. 54.

    Article  CAS  PubMed  Google Scholar 

  24. Kozlova, E.A. and Vorontsov, A.V., Int. J. Hydrogen Energy, 2010, vol. 35, p. 7337.

    Article  CAS  Google Scholar 

  25. Lyubina, T.P., Markovskaya, D.V., Kozlova, E.A., and Parmon, V.N., Int. J. Hydrogen Energy, 2013, vol. 38, p. 14173.

    Article  CAS  Google Scholar 

  26. Strataki, N., Antoniadou, M., Dracopolous, V., and Kianos, P., Catal. Today, 2010, vol. 151, p. 53.

    Article  CAS  Google Scholar 

  27. Bahruji, H., Bowker, M., Davies, P.R., and Pedrono, F., Appl. Catal., B, 2011, vol. 107, p. 205.

    Article  CAS  Google Scholar 

  28. Lyubina, T.P. and Kozlova, E.A., Kinet. Catal., 2012, vol. 53, no. 2, p. 188.

    Article  CAS  Google Scholar 

  29. Wagner, F.T., and Somorjai, G.A., J. Am. Chem. Soc., 1980, vol. 102, p. 5494.

    Article  CAS  Google Scholar 

  30. Strataki, N., Bekiari, V., Kondarides, D.I., and Lianos, P., Appl. Catal., B, 2007, vol. 77, p. 184.

    Article  CAS  Google Scholar 

  31. Ryu, S.Y., Choi, J., Balcerski, W., Lee, T.K., and Hoffmann, M.R., Ind. Eng. Chem. Res., 2007, vol. 46, p. 7476.

    Article  CAS  Google Scholar 

  32. Lin, W.-C., Yang, W.-D., Huang, I.-L., Wu, T.-S., and Chung, Z.-J., Energy Fuels, 2009, vol. 23, p. 2192.

    Article  CAS  Google Scholar 

  33. Ahmmad, B., Kanomata, K., and Hiorse, F., Int. J. Chem. Mol. Nucl. Mater. Metall. Eng., 2014, vol. 8, p. 24.

    Google Scholar 

  34. Meng, X., Yu, Q., Wang, T., Liu, G., Chang, K., Li, P., Liu, L., and Ye, J., APL Mater., 2015, vol. 3, p. 104401-1.

    Article  CAS  Google Scholar 

  35. Wang, L. and Wang, W., Int. J. Hydrogen Energy, 2012, vol. 37, p. 3041.

    Article  CAS  Google Scholar 

  36. Simon, T., Bouchonville, N., Berr, M.J., Vaneski, A., Adrovic, A., Volbers, D., Wyrwich, R., Doblinger, M., Susha, A.S., Rogach, A.L., Jackel, F., Stolarczyk, J.K., and Feldmann, J., Nat. Mater., 2014, vol. 13, p. 1013.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang, H., Catal. Lett., 2014, vol. 144, p. 1253.

    Article  CAS  Google Scholar 

  38. Li, Y., Wang, J., Peng, S., Lu, G., and Li, S., Int. J. Hydrogen Energy, 2010, vol. 35, p. 7116.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was conducted in the framework of the budget project АААА-А17-117041710087-3 for Boreskov Institute of Catalysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Markovskaya.

Additional information

Translated by Andrey Zeigarnik

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Markovskaya, D.V., Kozlova, E.A. Formal Kinetic Description of Photocatalytic Hydrogen Evolution from Ethanol Aqueous Solutions in the Presence of Sodium Hydroxide. Kinet Catal 59, 727–734 (2018). https://doi.org/10.1134/S0023158418060101

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158418060101

Keywords:

Navigation