Skip to main content
Log in

Entropy Interpretation of the Elastic–Plastic Strain Invariant

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

An interpretation of the nature of the relation between elastic and plastic strains, called the elastic–plastic strain invariant, is proposed which takes into account the change in the entropy of the system during autowave generation at the stage of linear strain hardening. It is shown that this approach consistently explains the nature of the invariant and its role in the description of plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. B. Zuev, V. I. Danilov, and S. A. Barannikova, Physics of Macrolocalization of Plastic Flow (Nauka, Novosibirsk, 2008) [in Russian].

    Google Scholar 

  2. V. I. Nekorkin and V. B. Kazantsev, “Autowaves and Solitons in a Three-Component Reaction-Diffusion System,” Int. J. Bifurcat. Chaos 12 (11), 2421–2434 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  3. V. A. Davydov, N. V. Davydov, V. G. Morozov, et al., “Autowaves in the Moving Excitable Media,” Condensed. Matter Phys. 7 (3), 565–578 (2004).

    Article  Google Scholar 

  4. S. A. Barannikova, M. V. Nadezhkin, and L. B. Zuev, “Relationship between Burgers Vectors of Dislocations and Plastic Strain Localization Patterns in Compression-Strained Alkali Halide Crystals,” Pis’ma Zh. Tekh. Fiz. 37 (16), 15–21 (2011).

    Google Scholar 

  5. L. B. Zuev, S. A. Barannikova, M. V. Nadezhkin, and V. V. Gorbatenko, “Localization of Deformation and Prognostibility of Rock Failure,” Fiz.-Tekh. Probl. Razrab. Polezn. Izkop., No. 1, 49–56 (2014).

    Google Scholar 

  6. K. Otsuka, K. Shimizu, “Pseudoelasticity and Shape Effects in Alloys,” Int. Metals Rev. 31 (3), 93–114 (1986).

    Google Scholar 

  7. V. F. Kurilov, L. B. Zuev, V. E. Gromov, et al., “Dynamic Deceleration of Dislocations in NaCl Crystals of Different Purity,” Kristallografiya 22 (3), 653–654 (1977).

    Google Scholar 

  8. E. V. Darinskaya, A. A. Urusovskaya, V. F. Opekunov, et al., “Study of Viscous Deceleration of Dislocations in LiF Crystals Based on the Mobility of Individual Dislocations,” Fiz. Tverd. Tela 20 (4), 1250–1252 (1978).

    Google Scholar 

  9. E. V. Darinskaya and A. A. Urusovskaya, “Viscous Deceleration of Dislocations in CsI Crystals at a Temperature of 77–300 K,” Fiz. Tverd. Tela 17 (8), 2421–2422 (1975).

    Google Scholar 

  10. L. B. Zuev, V. E. Gromov, and O. I. Aleksankina, “Dependence of Dislocation Velocity on Electric Field Intensity,” Kristallografiya 19 (4), 889–891 (1974).

    Google Scholar 

  11. L. B. Zuev, V. E. Gromov, V. F. Kurilov, and L. I. Gurevich, “Mobility of Dislocations in Zinc Single Crystals under the Action of Current Pulses,” Dokl. Akad. Nauk SSSR 239 (1), 874–876 (1978).

    Google Scholar 

  12. T. Suzuki, H. Yoshinaga, and S. Takeuchi, Dislocation Dynamics and Plasticity (Syokabo, Tokyo, 1986).

    Google Scholar 

  13. D. Hudson, Statistics (Geneva, 1964).

    Google Scholar 

  14. L. B. Zuev, “Elastic–Plastic Invariant Relation for Deformation of Solids,” Prikl. Mekh. Tekh. Fiz. 54 (1), 125–133 (2013) [J. Appl. Mech. Tech. Phys. 54 (1), 108–115 (2013)].

    Google Scholar 

  15. A. Seeger and W. Frank, “Structure Formation by Dissipative Processes in Crystals with High Defect Densities,” in Non-Linear Phenomena in Material Science (Trans. Tech. Publ., New York, 1987), pp. 125–138.

    Google Scholar 

  16. J. S. Langer, E. Bouchbinder, and T. Lookman, “Thermodynamic Theory of Dislocation-Mediated Plasticity,” Acta Mater. 58 (10), 3718–3732 (2010).

    Article  Google Scholar 

  17. A. Ishii, Yu Li, and S. Ogata, “Shuffling-Controlled versus Strain-Controlled Deformation Twinning: The Case for HCP Mg Twin Nucleation,” Int. J. Plasticity 82 (1), 32–43 (2016).

    Article  Google Scholar 

  18. Yu. L. Klimontovich, Introduction to the Physics of Open Systems (Yanus-K, Moscow, 2002) [in Russian].

    Google Scholar 

  19. L. B. Zuev, “Entropy of Waves of Localized Plastic Deformation,” Pis’ma Zh. Tekh. Fiz. 31 (3), 1–4 (2005).

    Google Scholar 

  20. J. F. Nye, Physical Properties of Crystals (Clarendon, Oxford, 1957).

    MATH  Google Scholar 

  21. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Nauka, Moscow, 1987; Pergamon Press, 1980).

    Google Scholar 

  22. Yu. B. Rumer and M. Sh. Ryvkin, Thermodynamics and Statistical Physics (Novosibirsk State University, Novosibirsk, 2000) [in Russian].

    Google Scholar 

  23. L. B. Zuev, “Macroscopic Physics of Plastic Deformation of Metals,” Usp. Fiz. Metal. 16 (1), 35–60 (2015).

    Article  Google Scholar 

  24. V. L. Gilyarov and A. I. Slutsker, “Energy Analysis of a Loaded Quantum Anharmonic Oscillator in a Wide Temperature Range,” Zh. Tekh. Fiz. 80 (5), 94–99 (2010).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. B. Zuev.

Additional information

Original Russian Text © L.B. Zuev, A.G. Lunev, O.S. Staskevich.

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 59, No. 6, pp. 135–142, November–December, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuev, L.B., Lunev, A.G. & Staskevich, O.S. Entropy Interpretation of the Elastic–Plastic Strain Invariant. J Appl Mech Tech Phy 59, 1078–1084 (2018). https://doi.org/10.1134/S0021894418060135

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894418060135

Keywords

Navigation