Skip to main content
Log in

Methods for Screening Live Cells

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Cell screening or, in other words, identification of cells with certain properties is now increasingly used in scientific and medical research, e.g., in diagnostics, drug testing, and production of cell clones with desired characteristics. In this review, we discuss existing methods of cell screening and their classification according to the cell presentation format. We describe the principles of the one-dimensional and two-dimensional formats and compare the main advantages and drawbacks of these formats. The first part describes the methods based on the 2D-format of cell presentation, when cells are immobilized in the same plane by various techniques. The second part describes the methods of the 1D-screening, when cells are aligned in a line in a stream of fluid and scanned one-by-one while passing through a detector. The final part of the review describes the method of high-performance cell analysis based on the merged gel technique. This technique combines the advantages of both 1D and 2D formats and, according to the authors, might become an effective alternative to many modern methods of cell screening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Koch, R. (1881) Zur Untersuchung von pathogenen Organismen, Mitth. Kais. Gesundheitsamte, 1, 1–48.

    Google Scholar 

  2. Shlegel, G. G. (2002) History of Microbiology [in Russian], Editorial URSS, Moscow.

    Google Scholar 

  3. Petri, R. J. (1887) Eine kleine Modification des Kochschen Plattenverfahrens, Central. Bacteriol. Parasiten., 1, 279–280.

    Google Scholar 

  4. Thomas, B. T., Effedua, H. I., Musa, O. S., Adeyemi, M. T., Adesoga, K. O., Ogundero, O., and Oluwadun, A. (2012) Enumeration of microorganism in dried cassava powder (Garri); a comparative study of four methods, New York Sci. J., 5, 63–66.

    Google Scholar 

  5. Breed, R. S., and Dotterrer, W. D. (1916) The number of colonies allowable on satisfactory agar plates, J. Bacteriol., 1, 321–331.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Tomsiewicz, D. M., Hotchkiss, D. K., Reinbold, G. W., Read, R. B. J., and Hartman, P. A. (1980) The most suitable number of colonies on plates for counting, J. Food Prot., 43, 282–286.

    Article  Google Scholar 

  7. Vieites, J. M., Guazzaroni, M.-E., Beloqui, A., Golyshin, P. N., and Ferrer, M. (2010) Molecular methods to study complex microbial communities, Methods Mol. Biol., 668, 1–37.

    Article  CAS  PubMed  Google Scholar 

  8. Ferrer, M., Beloqui, A., Vieites, J. M., Guazzaroni, M. E., Berger, I., and Aharoni, A. (2009) Interplay of metagenomics and in vitro compartmentalization, Microb. Biotechnol., 2, 31–39.

    Article  CAS  PubMed  Google Scholar 

  9. Lee, D.-G., Jeon, J. H., Jang, M. K., Kim, N. Y., Lee, J. H., Lee, J.-H., Kim, S.-J., Kim, G.-D., and Lee, S.-H. (2007) Screening and characterization of a novel fibrinolytic metalloprotease from a metagenomic library, Biotechnol. Lett., 29, 465–472.

    Article  CAS  PubMed  Google Scholar 

  10. Courtois, S., Cappellano, C. M., Ball, M., Francou, F.-X., Normand, P., Helynck, G., Martinez, A., Kolvek, S. J., Hopke, J., Osburne, M. S., August, P. R., Nalin, R., Guerineau, M., Jeannin, P., Simonet, P., and Pernodet, J.-L. (2003) Recombinant environmental libraries provide access to microbial diversity for drug discovery from natural products, Appl. Environ. Microbiol., 69, 49–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Van Loo, B., Spelberg, J. H. L., Kingma, J., Sonke, T., Wubbolts, M. G., and Janssen, D. B. (2004) Directed evolution of epoxide hydrolase from A. radiobacter toward higher enantioselectivity by errorprone PCR and DNA shuffling, Chem. Biol., 11, 981–990.

    Article  PubMed  CAS  Google Scholar 

  12. Heim, R., Prasher, D. C., and Tsien, R. Y. (1994) Wavelength mutations and posttranslational autoxidation of green fluorescent protein, Proc. Natl. Acad. Sci. USA, 91, 12501–12504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Conway, T., Sewell, G. W., Osman, Y. A., and Ingram, L. O. (1987) Cloning and sequencing of the alcohol dehydrogenase II gene from Zymomonas mobilis, J. Bacteriol., 169, 2591–2597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Maullu, C., Lampis, G., Deidda, D., Petruzzelli, S., and Pompei, R. (1998) A rapid method for screening large numbers of environmental microorganisms for antiviral activity, Appl. Environ. Microbiol., 64, 1161–1162.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Shcherbo, D., Merzlyak, E. M., Chepurnykh, T. V., Fradkov, A. F., Ermakova, G. V., Solovieva, E. A., Lukyanov, K. A., Bogdanova, E. A., Zaraisky, A. G., Lukyanov, S., and Chudakov, D. M. (2007) Bright farred fluorescent protein for whole-body imaging, Nat. Methods, 4, 741–746.

    Article  CAS  PubMed  Google Scholar 

  16. Wiehler, J., Von Hummel, J., and Steipe, B. (2001) Mutants of Discosoma red fluorescent protein with a GFP-like chromophore, FEBS Lett., 487, 384–389.

    Article  CAS  PubMed  Google Scholar 

  17. Knietsch, A., Waschkowitz, T., Bowien, S., Henne, A., and Daniel, R. (2003) Construction and screening of metagenomic libraries derived from enrichment cultures: generation of a gene bank for genes conferring alcohol oxidore-ductase activity on Escherichia coli, Appl. Environ. Microbiol., 69, 1408–1416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Knietsch, A., Waschkowitz, T., Bowien, S., Henne, A., and Daniel, R. (2003) Metagenomes of complex microbial consortia derived from different soils as sources for novel genes conferring formation of carbonyls from short-chain polyols on Escherichia coli, J. Mol. Microbiol. Biotechnol., 5, 46–56.

    Article  CAS  PubMed  Google Scholar 

  19. Streit, W. R., and Schmitz, R. A. (2004) Metagenomics–the key to the uncultured microbes, Curr. Opin. Microbiol., 7, 492–498.

    Article  CAS  PubMed  Google Scholar 

  20. Wang, W. X. (2012) Colony image acquisition and genetic segmentation algorithm and colony analyses, in Color Imaging XVII: Displaying, Processing, Hardcopy, and Applications, doi: 10.1117/12.913588.

    Google Scholar 

  21. Brugger, S. D., Baumberger, C., Jost, M., Jenni, W., Brugger, U., and Muhlemann, K. (2012) Automated counting of bacterial colony forming units on agar plates, PLoS One, 7, e33695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Clarke, M. L., Burton, R. L., Hill, A. N., Litorja, M., Nahm, M. H., and Hwang, J. (2010) Low-cost, high-throughput, automated counting of bacterial colonies, Cytometry, 77, 790–797.

    PubMed  Google Scholar 

  23. Chen, W.-B., and Zhang, C. (2009) An automated bacterial colony counting and classification system, Inf. Syst. Front., 11, 349–368.

    Article  Google Scholar 

  24. Joo, H., Arisawa, A., Lin, Z., and Arnold, F. H. (1999) A high-throughput digital imaging screen for the discovery and directed evolution of oxygenases, Chem. Biol., 6, 699–706.

    Article  CAS  PubMed  Google Scholar 

  25. Terskikh, A., Fradkov, A., Ermakova, G., Zaraisky, A., Tan, P., Kajava, A. V., Zhao, X., Lukyanov, S., Matz, M., Kim, S., Weissman, I., and Siebert, P. (2000) “Fluorescent timer”: protein that changes color with time, Science, 290, 1585–1588.

    Article  CAS  PubMed  Google Scholar 

  26. Alexeeva, M., Enright, A., Dawson, M. J., Mahmoudian, M., and Turner, N. J. (2002) Deracemization of alpha-methylbenzylamine using an enzyme obtained by in vitro evolution, Angew. Chem. Int. Ed. Engl., 41, 3177–3180.

    Article  CAS  PubMed  Google Scholar 

  27. Handelsman, J. (2005) Sorting out metagenomes, Nat. Biotechnol., 23, 38–39.

    Article  CAS  PubMed  Google Scholar 

  28. Henne, A., Schmitz, R. A., Bomeke, M., Gottschalk, G., and Daniel, R. (2000) Screening of environmental DNA libraries for the presence of genes conferring lipolytic activity on Escherichia coli, Appl. Environ. Microbiol., 66, 3113–3116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Henne, A., Daniel, R., Schmitz, R. A., and Gottschalk, G. (1999) Construction of environmental DNA libraries in Escherichia coli and screening for the presence of genes conferring utilization of 4-hydroxybutyrate, Appl. Environ. Microbiol., 65, 3901–3907.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Van Sint Fiet, S., Van Beilen, J. B., and Witholt, B. (2006) Selection of biocatalysts for chemical synthesis, Proc. Natl. Acad. Sci. USA, 103, 1693–1698.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Mirete, S., De Figueras, C. G., and Gonzalez-Pastor, J. E. (2007) Novel nickel resistance genes from the rhizosphere metagenome of plants adapted to acid mine drainage, Appl. Environ. Microbiol., 73, 6001–6011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lin, H., Tao, H., and Cornish, V. W. (2004) Directed evolution of a glycosynthase via chemical complementation, J. Am. Chem. Soc., 126, 15051–15059.

    Article  CAS  PubMed  Google Scholar 

  33. Taylor, S. V., Walter, K. U., Kast, P., and Hilvert, D. (2001) Searching sequence space for protein catalysts, Proc. Natl. Acad. Sci. USA, 98, 10596–10601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Majernik, A., Gottschalk, G., and Daniel, R. (2001) Screening of environmental DNA libraries for the presence of genes conferring Na(+)(Li(+))/H(+) antiporter activity on Escherichia coli: characterization of the recovered genes and the corresponding gene products, J. Bacteriol., 183, 6645–6653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Parachin, N. S., and Gorwa-Grauslund, M. F. (2011) Isolation of xylose isomerases by sequence-and function-based screening from a soil metagenomic library, Biotechnol. Biofuels, 4,9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Piel, J., Hui, D., Wen, G., Butzke, D., Platzer, M., Fusetani, N., and Matsunaga, S. (2004) Antitumor polyke-tide biosynthesis by an uncultivated bacterial symbiont of the marine sponge Theonella swinhoei, Proc. Natl. Acad. Sci. USA, 101, 16222–16227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Piel, J. (2002) A polyketide synthase-peptide synthetase gene cluster from an uncultured bacterial symbiont of Paederus beetles, Proc. Natl. Acad. Sci. USA, 99, 14002–14007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hrvatin, S., and Piel, J. (2007) Rapid isolation of rare clones from highly complex DNA libraries by PCR analysis of liquid gel pools, J. Microbiol. Methods, 68, 434–436.

    Article  CAS  PubMed  Google Scholar 

  39. Frost, W. D. (1915) Rapid method of counting bacteria in milk, Science, 42, 255–256.

    Article  CAS  PubMed  Google Scholar 

  40. Frost, W. D. (1916) A rapid method of counting living bacteria in milk and other richly seeded materials, J. Am. Med. Assoc., 66, 889–890.

    Article  CAS  Google Scholar 

  41. Frost, W. D. (1921) Improved technique for the micro or little plate method of counting bacteria in milk, J. Infect. Dis., 28, 176–184.

    Article  Google Scholar 

  42. Tanner, F. W. (1932) The Microbiology of Foods, The Twin City Printing Co.

    Google Scholar 

  43. Frost, W. D. (1916) Comparison of a rapid method of counting bacteria in milk with the standard plate method, J. Infect. Dis., 19, 273–287.

    Article  Google Scholar 

  44. Frost, W. D. (1917) Counting the living bacteria in milk -a practical test, J. Bacteriol., 2, 567–583.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Simmons, J. E. (1919) A comparison, with the standard plate method, of some rapid methods for bacteriologic analysis of milk, J. Bacteriol., 24, 322–336.

    CAS  Google Scholar 

  46. Nickerson, J. T. R. (1943) A modified little plate method for bacterial counts in vegetable freezing plants, J. Food Sci., 8, 163–168.

    Article  Google Scholar 

  47. Hatfield, H. M., and Park, W. H. (1922) A study of the practical value of the frost little plate method in the routine colony count of milk samples, Am. J. Public Health, 12, 478–487.

    Article  CAS  Google Scholar 

  48. Bryan, C. S., Scheid, M. V., Neuhauser, M. D., Gilbert, B. L., and Turney, G. J. A. (1942) Comparative study of the frost little plate and standard plate methods for the bacteriological examination of milk, cream, and ice cream, J. Dairy Sci., 25, 827–835.

    Article  CAS  Google Scholar 

  49. Fakhruddin, A. N. M., and Quilty, B. (2007) Measurement of the growth of a floc forming bacterium Pseudomonas putida CP1, Biodegradation, 18, 189–197.

    Article  CAS  PubMed  Google Scholar 

  50. Jannasch, H. W. (1958) Studies on planktonic bacteria by means of a direct membrane filter method, J. Gen. Microbiol., 18, 609–620.

    Article  CAS  PubMed  Google Scholar 

  51. Nelson, B. E. (1917) Direct microscopical counting of bacteria in water, J. Amer. Chem. Soc., 39, 515–523.

    Article  CAS  Google Scholar 

  52. Besnard, V., Federighi, M., and Cappelier, J. M. (2000) Development of a direct viable count procedure for the investigation of VBNC state in Listeria monocytogenes, Lett. Appl. Microbiol., 31, 77–81.

    Article  CAS  PubMed  Google Scholar 

  53. Caruso, G., Mancuso, M., and Crisafi, E. (2003) Combined fluorescent antibody assay and viability staining for the assessment of the physiological states of Escherichia coli in sea waters, J. Appl. Microbiol., 95, 225–233.

    Article  CAS  PubMed  Google Scholar 

  54. Daims, H., and Wagner, M. (2007) Quantification of uncultured microorganisms by fluorescence microscopy and digital image analysis, Appl. Microbiol. Biotechnol., 75, 237–248.

    Article  CAS  PubMed  Google Scholar 

  55. Oliver, J. D. (2005) The viable but nonculturable state in bacteria, J. Microbiol., 43, 93–100.

    PubMed  Google Scholar 

  56. Pyle, B. H., Broadaway, S. C., and McFeters, G. A. (1999) Sensitive detection of Escherichia coli O157:H7 in food and water by immunomagnetic separation and solidphase laser cytometry, Appl. Environ. Microbiol., 65, 1966–1972.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Besnard, V., Federighi, M., and Cappelier, J. (2000) Evidence of viable but nonculturable state in Listeria monocytogenes by direct viable count and CTC-DAPI double staining, Food Microbiol., 17, 697–704.

    Article  Google Scholar 

  58. Jannasch, H. W., and Jones, G. E. (1959) Bacterial populations in sea water as determined by different methods of enumeration, Limnol. Ocean., 4, 128–139.

    Article  Google Scholar 

  59. Kogure, K., Simidu, U., and Taga, N. (1979) A tentative direct microscopic method for counting living marine bacteria, Can. J. Microbiol., 25, 415–420.

    Article  CAS  PubMed  Google Scholar 

  60. Meynell, G. G., and Meynell, E. (1970) Theory and Practice in Experimental Bacteriology, 2nd Edn., CUP Archive, Cambridge.

    Google Scholar 

  61. Gerhardt, Ph. (1983) Manual of Methods for General Bacteriology [Russian translation], Mir, Moscow.

    Google Scholar 

  62. Pijper, A. (1947) Methylcellulose and bacterial motility, J. Bacteriol., 53, 257–269.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Bulloch, W. (1960) The History of Bacteriology, Oxford University Press, London.

    Google Scholar 

  64. Dharma Vijaya, M. N., Umashankar, K. M., Sudha, Nagure, A. G., and Kavitha, G. (2013) Prevalence of the Trichomonas vaginalis infection in a tertiary care hospital in rural Bangalore, Southern India, J. Clin. Diagn. Res., 7, 1401–1403.

    Google Scholar 

  65. Wegayehu, T., Adamu, H., and Petros, B. (2013) Prevalence of Giardia duodenalis and Cryptosporidium species infections among children and cattle in North Shewa Zone, Ethiopia, BMC Infect. Dis., 13,419.

    Article  Google Scholar 

  66. Teklemariam, Z., Abate, D., Mitiku, H., and Dessie, Y. (2013) Prevalence of intestinal parasitic infection among HIV-positive persons who are naive and on antiretroviral treatment in Hiwot Fana Specialized University Hospital, Eastern Ethiopia, ISRN AIDS, 324329.

    Google Scholar 

  67. Lee, W. C., Russell, B., Lau, Y. L., Fong, M.-Y., Chu, C., Sriprawat, K., Suwanarusk, R., Nosten, F., and Renia, L. (2013) Giemsastained wet mount based method for reticulocyte quantification: a viable alternative in resource limited or malaria endemic settings, PLoS One, 8, e60303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hathaway, W. E., Newby, L. A., and Githens, J. H. (1964) The acridine orange viability test applied to bone marrow cells. I. Correlation with trypan blue and eosin dye exclusion and tissue culture transformation, Blood, 23, 517–525.

    CAS  PubMed  Google Scholar 

  69. Freer, S. M. (1984) A permanent wetmount for fluorescent microscopy of surface stained lymphoid cells, J. Immunol. Methods, 66, 187–188.

    Article  CAS  PubMed  Google Scholar 

  70. Smith, D. L., and Rommel, F. (1977) A rapid micromethod for the simultaneous determination of phagocytic-microbiocidal activity of human peripheral blood leukocytes in vitro, J. Immunol. Methods, 17, 241–247.

    Article  CAS  PubMed  Google Scholar 

  71. Petrovsky, B. V. (1979) in Great Medical Encyclopedia [in Russian], Vol. 10, Sovetskaya Entsiklopediya, Moscow.

  72. Adams, R. L. P. (1990) Cell Culture for Biochemists, 2nd Edn., Elsevier, Amsterdam.

    Google Scholar 

  73. Semashko, N. A. (1930) in Great Medical Encyclopedia [in Russian], Vol. 12, Sovetskaya Entsiklopediya, Moscow, pp. 125–134.

    Google Scholar 

  74. Callison, J. G. (1912) A diluting fluid for standardization of vaccines with the hemocytometer, J. Med. Res., 27, 225–227.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Makler, A. (1978) A new chamber for rapid sperm count and motility estimation, Fertil. Steril., 30, 313–318.

    Article  CAS  PubMed  Google Scholar 

  76. Makler, A. (1980) The improved tenmicrometer chamber for rapid sperm count and motility evaluation, Fertil. Steril., 33, 337–338.

    Article  CAS  PubMed  Google Scholar 

  77. Makler, A., Fisher, M., and Lissak, A. (1984) A new method for rapid determination of sperm concentration in bull and ram semen, Theriogenology, 21, 543–554.

    Article  CAS  PubMed  Google Scholar 

  78. Christensen, P., Stryhn, H., and Hansen, C. (2005) Discrepancies in the determination of sperm concentration using Buerker–Tuerk, Thoma and Makler counting chambers, Theriogenology, 63, 992–1003.

    Article  CAS  PubMed  Google Scholar 

  79. Lenz, R. W., Kjelland, M. E., Vonderhaar, K., Swannack, T. M., and Moreno, J. F. (2011) A comparison of bovine seminal quality assessments using different viewing chambers with a computer-assisted semen analyzer, J. Anim. Sci., 89, 383–388.

    Article  CAS  PubMed  Google Scholar 

  80. Hoogewijs, M. K., De Vliegher, S. P., Govaere, J. L., De Schauwer, C., De Kruif, A., and Van Soom, A. (2012) Influence of counting chamber type on CASA outcomes of equine semen analysis, Equine Vet. J., 44, 542–549.

    Article  CAS  PubMed  Google Scholar 

  81. Coetzee, K., and Menkveld, R. (2001) Validation of a new disposable counting chamber, Arch. Androl., 47, 153–156.

    Article  CAS  PubMed  Google Scholar 

  82. Benitez, L. B., Caumo, K., Brandelli, A., and Rott, M. B. (2011) Bacteriocin-like substance from Bacillus amyloliq-uefaciens shows remarkable inhibition of Acanthamoeba polyphaga, Parasitol. Res., 108, 687–691.

    Article  PubMed  Google Scholar 

  83. De Queiroz, J. C., Ferreira, A. C., and Da Costa, A. C. A. (2012) The growth of Monoraphidium sp. and Scenedesmus sp. cells in the presence of thorium, Sci. World J., 592721.

    Google Scholar 

  84. Xiang, D., Cong, Y., Wang, C., Yue, J., Ma, X., Lu, Y., Liu, P., and Ma, J. (2012) Development of microscopic review criteria by comparison urine flow cytometer, strip and manual microscopic examination, Clin. Lab., 58, 979–985.

    PubMed  Google Scholar 

  85. Yamanishi, H., Imai, N., Suehisa, E., Kanakura, Y., and Iwatani, Y. (2007) Determination of leukocyte counts in cerebrospinal fluid with a disposable plastic hemocytometer, J. Clin. Lab. Anal., 21, 282–285.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Zimmermann, M., Ruprecht, K., Kainzinger, F., Heppner, F. L., and Weimann, A. (2011) Automated vs. manual cerebrospinal fluid cell counts: a work and cost analysis comparing the Sysmex XE-5000 and the Fuchs–Rosenthal manual counting chamber, Int. J. Lab. Hematol., 33, 629–637.

    Article  CAS  PubMed  Google Scholar 

  87. Blinkova, L. P., Pakhomov, Y. D., and Dmitrieva, O. V. (2013) Detection of non-cultivated forms of bacteria in lyophilized preparations of probiotics, J. Microbiol. Epidemiol. Immunobiol., 3, 83–88.

    Google Scholar 

  88. Svistunova, E. V., and Dnisov, L. A. (1988) Determination of anti-proliferative activity of recombinant human interferon (reaferon) on human diploid cells, Antibiot. Khimioter., 33, 513–515.

    CAS  PubMed  Google Scholar 

  89. Alekseeva, E. M., Volkova, I. V., Losev, I. R., Lemenkov, V. A., and Perevozchikov, S. M. (1996) A unit for automatic blood cell counting, Med. Tekh., 2, 32–33.

    Google Scholar 

  90. Yaqub, S., Anderson, J. G., MacGregor, S. J., and Rowan, N. J. (2004) Use of a fluorescent viability stain to assess lethal and sublethal injury in food-borne bacteria exposed to high-intensity pulsed electric fields, Lett. Appl. Microbiol., 39, 246–251.

    Article  CAS  PubMed  Google Scholar 

  91. Gunasekera, T. S., Sorensen, A., Attfield, P. V., Sorensen, S. J., and Veal, D. A. (2002) Inducible gene expression by nonculturable bacteria in milk after pasteurization, Appl. Environ. Microbiol., 68, 1988–1993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hilson, G. R. (1964) A disposable counting chamber for urinary cytology, J. Clin. Pathol., 17, 571–572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Madu, A. J., Ibegbulam, O. G., Ocheni, S., Madu, K. A., and Aguwa, E. N. (2011) Absolute neutrophil values in malignant patients on cytotoxic chemotherapy, Niger. J. Med., 20, 120–123.

    CAS  PubMed  Google Scholar 

  94. Sukcharoen, N., Ngeamjirawat, J., Chanprasit, Y., and Aribarg, A. (1994) A comparison of Makler counting chamber and improved Neubauer hemocytometer in sperm concentration measurement, J. Med. Assoc. Thai., 77, 471–476.

    CAS  PubMed  Google Scholar 

  95. Metzler-Zebeli, B. U., Schmitz-Esser, S., Klevenhusen, F., Podstatzky-Lichtenstein, L., Wagner, M., and Zebeli, Q. (2013) Grainrich diets differently alter ruminal and colonic abundance of microbial populations and lipopolysaccharide in goats, Anaerobe, 20, 65–73.

    Article  CAS  PubMed  Google Scholar 

  96. Hundt, W., Steinbach, S., O’Connell-Rodwell, C. E., Bednarski, M. D., and Guccione, S. (2009) The effect of high intensity focused ultrasound on luciferase activity on two tumor cell lines in vitro, under the control of a CMV promoter, Ultrasonics, 49, 312–318.

    CAS  PubMed  Google Scholar 

  97. Makdoumi, K., Backman, A., Mortensen, J., Magnuson, A., and Crafoord, S. (2013) Comparison of UVA-and UVA/riboflavin-induced growth inhibition of Acanthamoeba castellanii, Graefes Arch. Clin. Exp. Ophthalmol., 251, 509–514.

    Article  CAS  PubMed  Google Scholar 

  98. Collins, C. E., Young, N. A., Flaherty, D. K., Airey, D. C., and Kaas, J. H. (2010) A rapid and reliable method of counting neurons and other cells in brain tissue: a comparison of flow cytometry and manual counting methods, Front. Neuroanat., 4,5.

    PubMed  PubMed Central  Google Scholar 

  99. Strober, W. (2001) Monitoring cell growth, Curr. Protoc. Immunol., Appendix 3A.

    Google Scholar 

  100. Norris, K., and Powell, E. O. (1961) Improvements in determining total counts of bacteria, J. R. Microsc. Soc., 80, 107–119.

    Article  Google Scholar 

  101. Beck, M., Brockhuis, S., Van der Velde, N., Breukers, C., Greve, J., and Terstappen, L. W. (2012) On-chip sample preparation by controlled release of antibodies for simple CD4 counting, Lab Chip, 12, 167–173.

    Article  CAS  PubMed  Google Scholar 

  102. Razumov, A. S. (1932) A direct method of bacteria counting in water. Its comparison with the method of Koch, Mikrobiologiya, 1, 131–146.

    Google Scholar 

  103. Richards, O. W., and Krabek, W. B. (1954) Visibilizing microorganisms on membrane filter surface, J. Bacteriol., 67,613.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Ecker, R. E., and Lockhart, W. R. (1959) A rapid membrane filter method for direct counts of microorganisms from small samples, J. Bacteriol., 77, 173–176.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Ehrlich, R. (1960) Application of membrane filters, Adv. Appl. Microbiol., 2, 95–112.

    Article  CAS  PubMed  Google Scholar 

  106. Ehrlich, R. (1955) Technique for microscopic count of microorganisms directly on membrane filters, J. Bacteriol., 70, 265–268.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Bogosian, G., Aardema, N. D., Bourneuf, E. V., Morris, P. J., and O’Neil, J. P. (2000) Recovery of hydrogen peroxide-sensitive culturable cells of Vibrio vulnificus gives the appearance of resuscitation from a viable but nonculturable state, J. Bacteriol., 182, 5070–5075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Hobbie, J. E., Daley, R. J., and Jasper, S. (1977) Use of Nuclepore filters for counting bacteria by fluorescence microscopy, Appl. Environ. Microbiol., 33, 1225–1228.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Sekar, R., Fuchs, B. M., Amann, R., and Pernthaler, J. (2004) Flow sorting of marine bacterioplankton after fluorescence in situ hybridization, Appl. Environ. Microbiol., 70, 6210–6219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Banning, N., Toze, S., and Mee, B. J. (2003) Persistence of biofilmassociated Escherichia coli and Pseudomonas aeruginosa in groundwater and treated effluent in a laboratory model system, Microbiology, 149, 47–55.

    Article  CAS  PubMed  Google Scholar 

  111. Durtschi, J. D., Erali, M., Bromley, L. K., Herrmann, M. G., Petti, C. A., Smith, R. E., and Voelkerding, K. V. (2005) Increased sensitivity of bacterial detection in cerebrospinal fluid by fluorescent staining on low-fluorescence membrane filters, J. Med. Microbiol., 54, 843–850.

    Article  PubMed  Google Scholar 

  112. Ogawa, M., Tani, K., Ochiai, A., Yamaguchi, N., and Nasu, M. (2005) Multicolour digital image analysis system for identification of bacteria and concurrent assessment of their respiratory activity, J. Appl. Microbiol., 98, 1101–1106.

    Article  CAS  PubMed  Google Scholar 

  113. Haller, C., Rolleke, S., Vybiral, D., Witte, A., and Velimirov, B. (2000) Investigation of 0.2 µm filterable bacteria from the Western Mediterranean Sea using a molecular approach: dominance of potential starvation forms, FEMS Microbiol. Ecol., 31, 153–161.

    CAS  PubMed  Google Scholar 

  114. Klieneberger-Nobel, E. (1951) Filterable forms of bacteria, Bacteriol. Rev., 15, 77–103.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Levin, P. A. (2002) Light microscopy techniques for bacterial cell biology, Methods Microbiol., 31, 115–132.

    Article  CAS  Google Scholar 

  116. Miyashiro, T., and Goulian, M. (2007) Single-cell analysis of gene expression by fluorescence microscopy, Methods Enzymol., 423, 458–475.

    Article  CAS  PubMed  Google Scholar 

  117. Skinner, S. O., Sepulveda, L. A., Xu, H., and Golding, I. (2013) Measuring mRNA copy number in individual Escherichia coli cells using single-molecule fluorescent in situ hybridization, Nat. Protoc., 8, 1100–1113.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Young, J. W., Locke, J. C. W., Altinok, A., Rosenfeld, N., Bacarian, T., Swain, P. S., Mjolsness, E., and Elowitz, M. B. (2012) Measuring single-cell gene expression dynamics in bacteria using fluorescence time-lapse microscopy, Nat. Protoc., 7, 80–88.

    Article  CAS  Google Scholar 

  119. Elowitz, M. B., Levine, A. J., Siggia, E. D., and Swain, P. S. (2002) Stochastic gene expression in a single cell, Science, 297, 1183–1186.

    Article  CAS  PubMed  Google Scholar 

  120. Stewart, E. J., Madden, R., Paul, G., and Taddei, F. (2005) Aging and death in an organism that reproduces by morphologically symmetric division, PLoS Biol., 3, e45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Suel, G. M., Garcia-Ojalvo, J., Liberman, L. M., and Elowitz, M. B. (2006) An excitable gene regulatory circuit induces transient cellular differentiation, Nature, 440, 545–550.

    Article  PubMed  CAS  Google Scholar 

  122. Paul, J. (1960) Cell and Tissue Culture, Livingstone Ltd., Edinburgh.

    Google Scholar 

  123. Zicha, D., and Dunn, G. A. (1995) An image processing system for cell behavior studies in subconfluent cultures, J. Microsc., 179, 11–21.

    Article  Google Scholar 

  124. Mashanov, G. I., and Molloy, J. E. (2007) Automatic detection of single fluorophores in live cells, Biophys. J., 92, 2199–2211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Gu, Y., Di, W. L., Kelsell, D. P., and Zicha, D. (2004) Quantitative fluorescence resonance energy transfer (FRET) measurement with acceptor photobleaching and spectral unmixing, J. Microsc., 215, 162–173.

    Article  CAS  PubMed  Google Scholar 

  126. Zicha, D., Dobbie, I. M., Holt, M. R., Monypenny, J., Soong, D. Y. H., Gray, C., and Dunn, G. A. (2003) Rapid actin transport during cell protrusion, Science, 300, 142–145.

    Article  CAS  PubMed  Google Scholar 

  127. Dunn, G. A., Dobbie, I. M., Monypenny, J., Holt, M. R., and Zicha, D. (2002) Fluorescence localization after photobleaching (FLAP): a new method for studying protein dynamics in living cells, J. Microsc., 205, 109–112.

    Article  CAS  PubMed  Google Scholar 

  128. Maroudas, N. G. (1977) Sulfonated polystyrene as an optimal substratum for the adhesion and spreading of mesenchymal cells in monovalent and divalent saline solutions, J. Cell. Physiol., 90, 511–519.

    Article  CAS  PubMed  Google Scholar 

  129. Amstein, C. F., and Hartman, P. A. (1975) Adaptation of plastic surfaces for tissue culture by glow discharge, J. Clin. Microbiol., 2, 46–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Curtis, A. S., Forrester, J. V., McInnes, C., and Lawrie, F. (1983) Adhesion of cells to polystyrene surfaces, J. Cell Biol., 97, 1500–1506.

    Article  CAS  PubMed  Google Scholar 

  131. Yamaguchi, S., Matsunuma, E., and Nagamune, T. (2011) Immobilized culture and transfection microarray of nonadherent cells, Methods Mol. Biol., 706, 151–157.

    Article  CAS  PubMed  Google Scholar 

  132. Kato, K., Umezawa, K., Funeriu, D. P., Miyake, M., Miyake, J., and Nagamune, T. (2003) Immobilized culture of nonadherent cells on an oleyl poly(ethylene glycol) ether-modified surface, Biotechniques, 35, 1014–1021.

    Article  CAS  PubMed  Google Scholar 

  133. Mangoni, M. L., Papo, N., Barra, D., Simmaco, M., Bozzi, A., Di Giulio, A., and Rinaldi, A. C. (2004) Effects of the antimicrobial peptide temporin L on cell morphology, membrane permeability and viability of Escherichia coli, Biochem. J., 380, 859–865.

    CAS  PubMed  Google Scholar 

  134. Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., and Watson, J. D. (1994) Molecular Biology of the Cell, 3rd Edn., Garland Publishing, New York-London.

    Google Scholar 

  135. Swift, L. L., Farkas, M. H., Major, A. S., Valyi-Nagy, K., Linton, M. F., and Fazio, S. (2001) A recycling pathway for resecretion of internalized apolipoprotein E in liver cells, J. Biol. Chem., 276, 22965–229670.

    Article  CAS  PubMed  Google Scholar 

  136. Ivankovic-Dikic, I., Gronroos, E., Blaukat, A., Barth, B. U., and Dikic, I. (2000) Pyk2 and FAK regulate neurite outgrowth induced by growth factors and integrins, Nat. Cell Biol., 2, 574–581.

    Article  CAS  PubMed  Google Scholar 

  137. Miller, K. A., Eklund, E. A., Peddinghaus, M. L., Cao, Z., Fernandes, N., Turk, P. W., Thimmapaya, B., and Weitzman, S. A. (2001) Kruppel-like factor 4 regulates laminin alpha 3A expression in mammary epithelial cells, J. Biol. Chem., 276, 42863–42868.

    Article  CAS  PubMed  Google Scholar 

  138. Wan, L. Q., Ronaldson, K., Park, M., Taylor, G., Zhang, Y., Gimble, J. M., and Vunjak-Novakovic, G. (2011) Micropatterned mammalian cells exhibit phenotype-specific left-right asymmetry, Proc. Natl. Acad. Sci. USA, 108, 12295–12300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Lavoie, J. N., Champagne, C., Gingras, M. C., and Robert, A. (2000) Adenovirus E4 open reading frame 4-induced apoptosis involves dysregulation of Src family kinases, J. Cell Biol., 150, 1037–1056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Nakano, J., Yasui, H., Lloyd, K. O., and Muto, M. (1999) Biologic roles of gangliosides G(M3) and G(D3) in the attachment of human melanoma cells to extracellular matrix proteins, J. Investig. Dermatol. Symp. Proc., 4, 173–176.

    Article  CAS  PubMed  Google Scholar 

  141. Read, M. A., Whitley, M. Z., Gupta, S., Pierce, J. W., Best, J., Davis, R. J., and Collins, T. (1997) Tumor necrosis factor alpha-induced E-selectin expression is activated by the nuclear factor-kappaB and c-JUN N-terminal kinase/p38 mitogen-activated protein kinase pathways, J. Biol. Chem., 272, 2753–2761.

    Article  CAS  PubMed  Google Scholar 

  142. Laurance, M. E., Kwok, R. P., Huang, M. S., Richards, J. P., Lundblad, J. R., and Goodman, R. H. (1997) Differential activation of viral and cellular promoters by human T-cell lymphotropic virus-1 tax and cAMP-responsive element modulator isoforms, J. Biol. Chem., 272, 2646–2651.

    Article  CAS  PubMed  Google Scholar 

  143. Kuhn, T. B., Brown, M. D., and Bamburg, J. R. (1998) Rac1-dependent actin filament organization in growth cones is necessary for beta1-integrin-mediated advance but not for growth on poly-D-lysine, J. Neurobiol., 37, 524–540.

    Article  CAS  PubMed  Google Scholar 

  144. Sugawara, T., Tsurubuchi, Y., Agarwala, K. L., Ito, M., Fukuma, G., Mazaki-Miyazaki, E., Nagafuji, H., Noda, M., Imoto, K., Wada, K., Mitsudome, A., Kaneko, S., Montal, M., Nagata, K., Hirose, S., and Yamakawa, K. (2001) A missense mutation of the Na+ channel alpha II subunit gene Na(v)1.2 in a patient with febrile and afebrile seizures causes channel dysfunction, Proc. Natl. Acad. Sci. USA, 98, 6384–6389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Santambrogio, L., Belyanskaya, S. L., Fischer, F. R., Cipriani, B., Brosnan, C. F., Ricciardi-Castagnoli, P., Stern, L. J., Strominger, J. L., and Riese, R. (2001) Developmental plasticity of CNS microglia, Proc. Natl. Acad. Sci. USA, 98, 6295–6300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Tanner, S. L., Franzen, R., Jaffe, H., and Quarles, R. H. (2000) Evidence for expression of some microtubule-associated protein 1B in neurons as a plasma membrane glycoprotein, J. Neurochem., 75, 553–562.

    Article  CAS  PubMed  Google Scholar 

  147. Bissell, M. J., Rizki, A., and Mian, I. S. (2003) Tissue architecture: the ultimate regulator of breast epithelial function, Curr. Opin. Cell Biol., 15, 753–762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Tibbitt, M. W., and Anseth, K. S. (2009) Hydrogels as extracellular matrix mimics for 3D cell culture, Biotechnol. Bioeng., 103, 655–663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Zhang, S. (2004) Beyond the Petri dish, Nat. Biotechnol., 22, 151–152.

    Article  CAS  PubMed  Google Scholar 

  150. Griffith, L. G., and Swartz, M. A. (2006) Capturing complex 3D tissue physiology in vitro, Nat. Rev. Mol. Cell Biol., 7, 211–224.

    Article  CAS  PubMed  Google Scholar 

  151. Elsdale, T., and Bard, J. (1972) Collagen substrata for studies on cell behavior, J. Cell Biol., 54, 626–637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Pampaloni, F., Reynaud, E. G., and Stelzer, E. H. K. (2007) The third dimension bridges the gap between cell culture and live tissue, Nat. Rev. Mol. Cell Biol., 8, 839–845.

    Article  CAS  PubMed  Google Scholar 

  153. Weaver, V. M., Petersen, O. W., Wang, F., Larabell, C. A., Briand, P., Damsky, C., and Bissell, M. J. (1997) Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies, J. Cell Biol., 137, 231–245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Roskelley, C. D., Desprez, P. Y., and Bissell, M. J. (1994) Extracellular matrix-dependent tissue-specific gene expression in mammary epithelial cells requires both physical and biochemical signal transduction, Proc. Natl. Acad. Sci. USA, 91, 12378–12382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Yamada, K. M., and Cukierman, E. (2007) Modeling tissue morphogenesis and cancer in 3D, Cell, 130, 601–610.

    Article  CAS  PubMed  Google Scholar 

  156. Bissell, M. J., Radisky, D. C., Rizki, A., Weaver, V. M., and Petersen, O. W. (2002) The organizing principle: microen-vironmental influences in the normal and malignant breast, Differentiation, 70, 537–546.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Engler, A. J., Sen, S., Sweeney, H. L., and Discher, D. E. (2006) Matrix elasticity directs stem cell lineage specification, Cell, 126, 677–689.

    Article  CAS  PubMed  Google Scholar 

  158. Sabeh, F., Shimizu-Hirota, R., and Weiss, S. J. (2009) Protease-dependent versus-independent cancer cell invasion programs: three-dimensional amoeboid movement revisited, J. Cell Biol., 185, 11–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Buxboim, A., Ivanovska, I. L., and Discher, D. E. (2010) Matrix elasticity, cytoskeletal forces and physics of the nucleus: how deeply do cells “feel” outside and in? J. Cell Sci., 123, 297–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Zegers, M. M. P., O’Brien, L. E., Yu, W., Datta, A., and Mostov, K. E. (2003) Epithelial polarity and tubulogenesis in vitro, Trends Cell Biol., 13, 169–176.

    Article  CAS  PubMed  Google Scholar 

  161. Pampaloni, F., and Stelzer, E. (2010) Three-dimensional cell cultures in toxicology, Biotechnol. Genet. Eng. Rev., 26, 117–138.

    Article  CAS  PubMed  Google Scholar 

  162. Pampaloni, F., Stelzer, E. H. K., and Masotti, A. (2009) Three-dimensional tissue models for drug discovery and toxicology, Recent Pat. Biotechnol., 3, 103–117.

    Article  CAS  PubMed  Google Scholar 

  163. Lee, G. Y., Kenny, P. A., Lee, E. H., and Bissell, M. J. (2007) Three-dimensional culture models of normal and malignant breast epithelial cells, Nat. Methods, 4, 359–365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Wang, Y. L., and Pelham, R. J. (1998) Preparation of a flexible, porous polyacrylamide substrate for mechanical studies of cultured cells, Methods Enzymol., 298, 489–496.

    Article  CAS  PubMed  Google Scholar 

  165. Moldavan, A. (1934) Photoelectric technique for the counting of microscopical cells, Science, 80, 188–189.

    Article  CAS  PubMed  Google Scholar 

  166. Givan, A. L. (2011) Flow cytometry: an introduction, Methods Mol. Biol., 699, 1–29.

    Article  CAS  PubMed  Google Scholar 

  167. Cornwall, J. B., and Davison, R. M. (1960) Rapid counter for small particles in suspension, J. Sci. Instrum., 37, 414–417.

    Article  CAS  Google Scholar 

  168. Gucker, F. T., and O’Konski, C. T. (1947) A photoelectronic counter for colloidal particles, J. Am. Chem. Soc., 69, 2422–2431.

    Article  CAS  PubMed  Google Scholar 

  169. Beirne, T., and Hutcheon, J. M. (1957) A photoelectric particle counter for use in the sieve range, J. Sci. Instrum., 34, 196–200.

    Article  CAS  Google Scholar 

  170. Coulter, W. H. (1953) Means for counting particles suspended in a fluid, Patent US2656508 (A).

    Google Scholar 

  171. Bakke, A. C. (2001) The principles of flow cytometry, Lab. Med., 32, 207–211.

    Article  Google Scholar 

  172. Guo, J., Pui, T. S., Ban, Y.-L., Rahman, A., and Kang, Y. (2013) Electrokinetic analysis of cell translocation in low-cost microfluidic cytometry for tumor cell detection and enumeration, IEEE Trans. Biomed. Eng., 60, 3269–3275.

    Article  PubMed  Google Scholar 

  173. Yang, W., Huang, H., Wang, Y., Yu, X., and Yang, Z. (2013) High red blood cell distribution width is closely associated with nonalcoholic fatty liver disease, Eur. J. Gastroenterol. Hepatol., 26, 174–178.

    Article  Google Scholar 

  174. Zhang, W., McLamore, E. S., Garland, N. T., Leon, J. V. C., and Banks, M. K. (2013) A simple method for quantifying biomass cell and polymer distribution in biofilms, J. Microbiol. Methods, 94, 367–374.

    Article  CAS  PubMed  Google Scholar 

  175. Kamentsky, L. A., Melamed, M. R., and Derman, H. (1965) Spectrophotometer: new instrument for ultrarapid cell analysis, Science, 150, 630–631.

    Article  CAS  PubMed  Google Scholar 

  176. Dittrich, W., and Gohde, W. (1969) Impulse fluorometry of single cells in suspension, Z. Naturforsch. B, 24b, 221–228.

    Google Scholar 

  177. VanDilla, M. A., Trujillo, T. T., Mullaney, P. F., and Coulter, J. R. (1969) Cell microfluorometry: a method for rapid fluorescence measurement, Science, 163, 1213–1214.

    Article  CAS  Google Scholar 

  178. Crosland-Taylor, P. J. (1953) A device for counting small particles suspended in a fluid through a tube, Nature, 171, 37–38.

    Article  CAS  PubMed  Google Scholar 

  179. Piyasena, M. E., and Graves, S. W. (2014) The intersection of flow cytometry with microfluidics and microfabrication, Lab Chip, 14, 1044–1059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Radcliff, G., and Jaroszeski, M. J. (1998) Basics of flow cytometry, Methods Mol. Biol., 91, 1–24.

    CAS  PubMed  Google Scholar 

  181. Nebevon Caron, G., and Badley, R. A. (1996) Bacterial characterization by flow cytometry, in Flow Cytometry Applications in Cell Culture (Al-Rubeai, M., and Emery, N., eds.) Marcel Dekker, Inc., New York-Hong Kong, pp. 257–290.

    Google Scholar 

  182. Givan, L. A. (2001) Flow Cytometry: First Principles, 2nd Edn., Wiley-Liss, Inc., N. Y.

    Book  Google Scholar 

  183. Ibrahim, S. F., and Van den Engh, G. (2007) Flow cytometry and cell sorting, Adv. Biochem. Eng. Biotechnol., 106, 19–39.

    CAS  PubMed  Google Scholar 

  184. Davey, H. M., and Kell, D. B. (1996) Flow cytometry and cell sorting of heterogeneous microbial populations: the importance of single-cell analyses, Microbiol. Rev., 60, 641–696.

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Davey, H. M., and Winson, M. K. (2003) Using flow cytometry to quantify microbial heterogeneity, Curr. Issues Mol. Biol., 5, 9–15.

    PubMed  Google Scholar 

  186. Chen, G., Hayhurst, A., Thomas, J. G., Harvey, B. R., Iverson, B. L., and Georgiou, G. (2001) Isolation of high-affinity ligand-binding proteins by periplasmic expression with cytometric screening (PECS), Nat. Biotechnol., 19, 537–542.

    Article  CAS  PubMed  Google Scholar 

  187. Kalyuzhnaya, M. G., Zabinsky, R., Bowerman, S., Baker, D. R., Lidstrom, M. E., and Chistoserdova, L. (2006) Fluorescence in situ hybridization-flow cytometry-cell sorting-based method for separation and enrichment of type I and type II methanotroph populations, Appl. Environ. Microbiol., 72, 4293–4301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Ward, M., Turner, P., DeJohn, M., and Kaduchak, G. (2009) Fundamentals of acoustic cytometry, Curr. Protoc. Cytom., 49, 1.22.1–1.22.12.

    Article  Google Scholar 

  189. Kundt, A., and Lehmann, O. (1874) Ueber longitudinale Schwingungen und Klangfiguren in cylindrischen Flüssigkeitssulen, Ann. Phys. Chemie, 229, 1–12.

    Article  Google Scholar 

  190. Curtis, H., and Stephans, E. (1982) Ultrasonic continuous flow plasmapheresis separator, IBM Tech. Disc. Bull., 25, 192–193.

    Google Scholar 

  191. Coakley, W. T., Bardsley, D. W., Grundy, M. A., Zamani, F., and Clarke, D. J. (1989) Cell manipulation in ultrasonic standing wave fields, J. Chem. Technol. Biotechnol., 1, 43–62.

    Google Scholar 

  192. Coakley, W. T., Hawkes, J. J., Sobanski, M. A., Cousins, C. M., and Spengler, J. (2000) Analytical scale ultrasonic standing wave manipulation of cells and microparticles, Ultrasonics, 38, 638–641.

    Article  CAS  PubMed  Google Scholar 

  193. Yasuda, K., Haupt, S. S., Umemura, S., Yagi, T., Nishida, M., and Shibata, Y. (1997) Using acoustic radiation force as a concentration method for erythrocytes, J. Acoust. Soc. Am., 102, 642–645.

    Article  CAS  PubMed  Google Scholar 

  194. Goddard, G., and Kaduchak, G. (2005) Ultrasonic particle concentration in a line-driven cylindrical tube, J. Acoust. Soc. Am., 117, 3440–3447.

    Article  CAS  PubMed  Google Scholar 

  195. Goddard, G., Martin, J. C., Graves, S. W., and Kaduchak, G. (2006) Ultrasonic particle-concentration for sheathless focusing of particles for analysis in a flow cytometer, Cytometry A, 69, 66–74.

    Article  PubMed  Google Scholar 

  196. Goddard, G. R., Sanders, C. K., Martin, J. C., Kaduchak, G., and Graves, S. W. (2007) Analytical performance of an ultrasonic particle focusing flow cytometer, Anal. Chem., 79, 8740–8746.

    Article  CAS  PubMed  Google Scholar 

  197. Austin Suthanthiraraj, P. P., and Graves, S. W. (2013) Fluidics, Curr. Protoc. Cytom., 65, 1.2.1–1.2.22.

    Article  Google Scholar 

  198. Piyasena, M. E., Austin Suthanthiraraj, P. P., Applegate, R. W., Jr., Goumas, A. M., Woods, T. A., Lopez, G. P., and Graves, S. W. (2012) Multinode acoustic focusing for parallel flow cytometry, Anal. Chem., 84, 1831–1839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Goix, P. J. (2004) Method and apparatus for detecting microparticles in fluid samples, Patent US 6710871 B1.

    Google Scholar 

  200. Huh, D., Gu, W., Kamotani, Y., Grotberg, J. B., and Takayama, S. (2005) Microfluidics for flow cytometric analysis of cells and particles, Physiol. Meas., 26, R73–R98.

    Article  PubMed  Google Scholar 

  201. Wen, N., Zhao, Z., Fan, B., Chen, D., Men, D., Wang, J., and Chen, J. (2016) Development of droplet microfluidics enabling high-throughput single-cell analysis, Molecules, 21, 1–13.

    Article  CAS  Google Scholar 

  202. Chen, J., Xue, C., Zhao, Y., Chen, D., Wu, M. H., and Wang, J. (2015) Microfluidic impedance flow cytometry enabling high-throughput single-cell electrical property characterization, Int. J. Mol. Sci., 16, 9804–9830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Reece, A., Xia, B., Jiang, Z., Noren, B., McBride, R., and Oakey, J. (2016) Microfluidic techniques for high throughput single cell analysis, Curr. Opin. Biotechnol., 40, 90–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Folch, A. (2013) Introduction to BioMEMS, CRC Press, Taylor and Francis Group, Boca Raton.

    Google Scholar 

  205. Fan, B., Li, X., Chen, D., Peng, H., Wang, J., and Chen, J. (2016) Development of microfluidic systems enabling high-throughput single-cell protein characterization, Sensors (Basel), 16, 1–12.

    Google Scholar 

  206. Evstrapov, A. A. (2011) Microfluidic chips for biological and medical investigations, J. Mendeleev Ros. Khim. Obshch., 55, 99–110.

    CAS  Google Scholar 

  207. Evstrapov, A. A., Lukashenko, T. A., Rudnitskaya, G. E., Bulyanitsa, A. L., Kurochkin, V. E., Gusev, V. S., Ivanov, O. G., Berkutova, I. F., and Savitskaya, A. A. (2012) Microfluidic chips from glass materials, Nauch. Pribor., 22, 27–43.

    CAS  Google Scholar 

  208. Frankowski, M., Theisen, J., Kummrow, A., Simon, P., Ragusch, H., Bock, N., Schmidt, M., and Neukammer, J. (2013) Microflow cytometers with integrated hydrodynamic focusing, Sensors (Basel), 13, 4674–4693.

    Article  Google Scholar 

  209. Sobek, D. (1997) Microfabricated Merged Silica Flow Chambers for Flow Cytometry, Thesis Ph. D. Cambridge, Massachusetts Institute of Technology.

    Google Scholar 

  210. Daniele, M. A., Boyd, D. A., Mott, D. R., and Ligler, F. S. (2015) 3D hydrodynamic focusing microfluidics for emerging sensing technologies, Biosens. Bioelectron., 67, 25–34.

    Article  CAS  PubMed  Google Scholar 

  211. Lee, G., Chang, C., Huang, S., and Yang, R. (2006) The hydrodynamic focusing effect inside rectangular microchannels, J. Micromech. Microeng., 16, 1024–1032.

    Article  Google Scholar 

  212. Simonnet, C., and Groisman, A. (2005) Two-dimensional hydrodynamic focusing in a simple microfluidic device, Appl. Phys. Lett., 87, doi: 10.1063/1.2046729.

  213. Simonnet, C., and Groisman, A. (2006) High-throughput and high resolution flow cytometry in molded microfluidic devices, Anal. Chem., 78, 5653–5663.

    Article  CAS  PubMed  Google Scholar 

  214. Villarruel, C. A., Lou, J. W., and Schermer, R. (2012) Tubular Array for Fluidic Focusing with Integrated Optical Access Region, Patent US 8651138 B2.

    Google Scholar 

  215. Kummrow, A., Theisen, J., Frankowski, M., Tuchscheerer, A., Yildirim, H., Brattke, K., Schmidt, M., and Neukammer, J. (2009) Microfluidic structures for flow cytometric analysis of hydrodynamically focused blood cells fabricated by ultra-precision micromachining, Lab Chip, 9, 972–981.

    Article  CAS  PubMed  Google Scholar 

  216. Frankowski, M., Bock, N., Kummrow, A., Schadel-Ebner, S., Schmidt, M., Tuchscheerer, A., and Neukammer, J. (2011) A microflow cytometer exploited for the immunological differentiation of leukocytes, Cytometry A, 79, 613–624.

    Article  PubMed  CAS  Google Scholar 

  217. Oakey, J., Applegate, R. W., Jr., Arellano, E., Di Carlo, D., Graves, S. W., and Toner, M. (2010) Particle focusing in staged inertial microfluidic devices for flow cytometry, Anal. Chem., 82, 3862–3867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Hur, S. C., Tse, H. T. K., and Di Carlo, D. (2010) Sheathless inertial cell ordering for extreme throughput flow cytometry, Lab Chip, 10, 274–280.

    Article  CAS  PubMed  Google Scholar 

  219. Lenshof, A., Magnusson, C., and Laurell, T. (2012) Acoustofluidics 8: applications of acoustophoresis in continuous flow microsystems, Lab Chip, 12, 1210.

    Article  CAS  PubMed  Google Scholar 

  220. Yang, A. H. J., and Soh, H. T. (2012) Acoustophoretic sorting of viable mammalian cells in a microfluidic device, Anal. Chem., 84, 10756–10762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. He, M., Edgar, J. S., Jeffries, G. D., Lorenz, R. M., Shelby, J. P., and Chiu, D. T. (2005) Selective encapsulation of single cells and subcellular organelles into picoliter-and femtoliter-volume droplets, Anal. Chem., 77, 1539–1544.

    Article  CAS  PubMed  Google Scholar 

  222. Tan, Y. C., Hettiarachchi, K., Siu, M., Pan, Y. R., and Lee, A. P. (2006) Controlled microfluidic encapsulation of cells, proteins, and microbeads in lipid vesicles, J. Am. Chem. Soc., 128, 5656–5658.

    Article  CAS  PubMed  Google Scholar 

  223. Luo, D., Pullela, S. R., Marquez, M., and Cheng, Z. (2007) Cell encapsules with tunable transport and mechanical properties, Biomicrofluidics, 1, 34102.

    Article  PubMed  CAS  Google Scholar 

  224. Edd, J. F., Di Carlo, D., Humphry, K. J., Koster, S., Irimia, D., Weitz, D. A., and Toner, M. (2008) Controlled encapsulation of single-cells into monodisperse picolitre drops, Lab Chip, 8, 1262–1264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Lindstrom, S., and Andersson-Svahn, H. (2010) Overview of single-cell analyses: microdevices and applications, Lab Chip, 10, 3363–3372.

    Article  PubMed  CAS  Google Scholar 

  226. Mahieu, S., Vertessen, F., and Van der Planken, M. (2004) Evaluation of ADVIA 120 CSF assay (Bayer) vs. chamber counting of cerebrospinal fluid specimens, Clin. Lab. Haematol., 26, 195–199.

    Article  CAS  PubMed  Google Scholar 

  227. Wlodkowic, D., and Cooper, J. M. (2010) Microfluidic cell arrays in tumor analysis: new prospects for integrated cytomics, Expert Rev. Mol. Diagn., 10, 521–530.

    Article  PubMed  Google Scholar 

  228. Caroprese, M., Marzano, A., Schena, L., and Sevi, A. (2008) Technical note: immunomagnetic procedure for positive selection of macrophages in ovine milk, J. Dairy Sci., 91, 1908–1912.

    Article  CAS  PubMed  Google Scholar 

  229. Chetverin, A. B., Chetverina, H. V., and Samatov, T. R. (2007) Noninvasive Molecular Colony Methods, Kits and Apparatus, Patent EP1999268.

    Google Scholar 

  230. Gordeev, A. A., Samatov, T. R., Chetverina, H. V., and Chetverin, A. B. (2011) 2D-format for screening bacterial cells at the throughput of flow cytometry, Biotechnol. Bioeng., 108, 2682–2690.

    Article  CAS  PubMed  Google Scholar 

  231. Gordeev, A. A., Chetverina, H. V., and Chetverin, A. B. (2012) Planar arrangement of eukaryotic cells in merged hydrogels combines the advantages of 3-D and 2-D cultures, Biotechniques, 52, 325–331.

    CAS  PubMed  Google Scholar 

  232. Eden, E., Geva-Zatorsky, N., Issaeva, I., Cohen, A., Dekel, E., Danon, T., Cohen, L., Mayo, A., and Alon, U. (2011) Proteome half-life dynamics in living human cells, Science, 331, 764–768.

    Article  CAS  PubMed  Google Scholar 

  233. Gaggioli, C., Hooper, S., Hidalgo-Carcedo, C., Grosse, R., Marshall, J. F., Harrington, K., and Sahai, E. (2007) Fibroblastled collective invasion of carcinoma cells with differing roles for Rho GTPases in leading and following cells, Nat. Cell Biol., 9, 1392–1400.

    Article  CAS  PubMed  Google Scholar 

  234. Kraehenbuehl, T. P., Langer, R., and Ferreira, L. S. (2011) Three-dimensional biomaterials for the study of human pluripotent stem cells, Nat. Methods, 8, 731–736.

    Article  CAS  PubMed  Google Scholar 

  235. Shapira-Schweitzer, K., Habib, M., Gepstein, L., and Seliktar, D. (2009) A photopolymerizable hydrogel for 3-D culture of human embryonic stem cell-derived cardiomyocytes and rat neonatal cardiac cells, J. Mol. Cell. Cardiol., 46, 213–224.

    Article  CAS  PubMed  Google Scholar 

  236. Cukierman, E., Pankov, R., Stevens, D. R., and Yamada, K. M. (2001) Taking cell-matrix adhesions to the third dimension, Science, 294, 1708–1712.

    Article  CAS  PubMed  Google Scholar 

  237. Katz, E., Dubois-Marshall, S., Sims, A. H., Gautier, P., Caldwell, H., Meehan, R. R., and Harrison, D. J. (2011) An in vitro model that recapitulates the epithelial to mesenchymal transition (EMT) in human breast cancer, PLoS One, 6, e17083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Katz, E., Dubois-Marshall, S., Sims, A. H., Faratian, D., Li, J., Smith, E. S., Quinn, J. A., Edward, M., Meehan, R. R., Evans, E. E., Langdon, S. P., and Harrison, D. J. (2010) A gene on the HER2 amplicon, C35, is an oncogene in breast cancer whose actions are prevented by inhibition of Syk, Br. J. Cancer, 103, 401–410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Amjad, S. B., Carachi, R., and Edward, M. (2007) Keratinocyte regulation of TGF-beta and connective tissue growth factor expression: a role in suppression of scar tissue formation, Wound Rep. Regen., 15, 748–755.

    Article  Google Scholar 

  240. Serebriiskii, I., Castello-Cros, R., Lamb, A., Golemis, E. A., and Cukierman, E. (2008) Fibroblast-derived 3D matrix differentially regulates the growth and drugrespon-siveness of human cancer cells, Matrix Biol., 27, 573–585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Ulrich, T. A., Jain, A., Tanner, K., MacKay, J. L., and Kumar, S. (2010) Probing cellular mechanobiology in three-dimensional culture with collagen-agarose matrices, Biomaterials, 31, 1875–1884.

    Article  CAS  PubMed  Google Scholar 

  242. Ozaki, Y., Uda, S., Saito, T. H., Chung, J., Kubota, H., and Kuroda, S. (2010) A quantitative image cytometry technique for time series or population analyses of signaling networks, PLoS One, 5, e9955.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  243. Henriksen, M., Miller, B., Newmark, J., Al-Kofahi, Y., and Holden, E. (2011) Laser scanning cytometry and its applications: a pioneering technology in the field of quantitative imaging cytometry, Methods Cell Biol., 102, 161–205.

    PubMed  Google Scholar 

  244. Conrad, C., Wunsche, A., Tan, T. H., Bulkescher, J., Sieckmann, F., Verissimo, F., Edelstein, A., Walter, T., Liebel, U., Pepperkok, R., and Ellenberg, J. (2011) Micropilot: automation of fluorescence microscopy-based imaging for systems biology, Nat. Methods, 8, 246–249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Webster, G. A., Bowles, M. J., Karim, M. S., Wood, R. F., and Pockley, A. G. (1995) Flow cytometric analysis of peripheral blood lymphocyte subset light scatter characteristics as a means of monitoring the development of rat small bowel allograft rejection, Clin. Exp. Immunol., 100, 536–542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Gordeev.

Additional information

Original Russian Text © A. A. Gordeev, A. B. Chetverin, 2018, published in Uspekhi Biologicheskoi Khimii, 2018, Vol. 58, pp. 173–222.

To whom correspondence should be addressed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gordeev, A.A., Chetverin, A.B. Methods for Screening Live Cells. Biochemistry Moscow 83 (Suppl 1), S81–S102 (2018). https://doi.org/10.1134/S0006297918140080

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297918140080

Keywords

Navigation