Skip to main content
Log in

Grip and load force control and coordination in object manipulation during a night of sleep deprivation

  • Original Article
  • Published:
Sleep and Biological Rhythms Aims and scope Submit manuscript

Abstract

Although sleep deprivation causes deficits in the performance of several sensorimotor tasks, its effects on object manipulation are underexplored. To investigate the possible effects of sleep deprivation on the control of object manipulation we assessed the relationship between the force components acting on the digits-object interaction (i.e. grip force [GF] and load force [LF]) during two simple manipulation tasks. Sixteen young adults performed two manipulation tasks five times along one night of sleep deprivation, at 23:00, 01:00, 03:00, 05:00, and 07:00 h. In the first task (i.e. holding), participants were asked to hold an instrumented object, as still as possible, during 12 s. In the second task (i.e. shaking), they were instructed to continuously oscillate the object upward and downward at two frequencies, 0.8 Hz and 1.2 Hz. The results revealed that individuals who remained sleep deprived decreased linearly the amount of GF exerted while holding the object still as the night progressed. Also, results revealed that during the shaking task the GF-LF coordination and GF control were negatively affected at 03:00. These results indicate that during the holding task GF control is strongly affected by time awake and that during the shaking, a dynamic task, circadian variations play a major role. These changes could be detrimental to work-related manipulation tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Killgore WD. Effects of sleep deprivation on cognition. Prog. Brain Res. 2010; 185: 105–29.

    Article  PubMed  Google Scholar 

  2. Chee MW, Tan JC, Parimal S, Zagorodnov V. Sleep deprivation and its effects on object-selective attention. Neuroimage 2010; 49 (2): 1903–10.

    Article  PubMed  Google Scholar 

  3. Aguiar SA, Barela JA. Sleep deprivation affects sensori-motor coupling in postural control of young adults. Neurosci. Lett. 2014; 574: 47–52.

    Article  CAS  PubMed  Google Scholar 

  4. Jasper I, Haussler A, Marquardt C, Hermsdorfer J. Circadian rhythm in handwriting. J. Sleep Res. 2009; 18 (2): 264–71.

    Article  PubMed  Google Scholar 

  5. Patel M, Gomez S, Berg S et al. Effects of 24-h and 36-h sleep deprivation on human postural control and adaptation. Exp. Brain Res. 2008; 185 (2): 165–73.

    Article  CAS  PubMed  Google Scholar 

  6. Fabbri M, Martoni M, Esposito MJ, Brighetti G, Natale V. Postural control after a night without sleep. Neuropsychologia 2006; 44 (12): 2520–5.

    Article  PubMed  Google Scholar 

  7. Thomas M, Sing H, Belenky G et al. Neural basis of alertness and cognitive performance impairments during sleepiness. I. Effects of 24 h of sleep deprivation on waking human regional brain activity. J. Sleep Res. 2000; 9 (4): 335–52.

    Article  CAS  PubMed  Google Scholar 

  8. Wu JC, Gillin JC, Buchsbaum MS et al. The effect of sleep deprivation on cerebral glucose metabolic rate in normal humans assessed with positron emission tomography. Sleep 1991; 14 (2): 155–62.

    CAS  PubMed  Google Scholar 

  9. Inoue Y, Komada Y. Sleep loss, sleep disorders and driving accidents. Sleep Biol. Rhythms 2014; 12: 96–105.

    Article  Google Scholar 

  10. Takahashi M. Assisting shift workers through sleep and circadian research. Sleep Biol. Rhythms 2014; 12: 85–95.

    Article  Google Scholar 

  11. Borbely AA. A two process model of sleep regulation. Hum. Neurobiol. 1982; 1 (3): 195–204.

    CAS  PubMed  Google Scholar 

  12. Bougard C, Lepelley MC, Davenne D. The influences of time-of-day and sleep deprivation on postural control. Exp. Brain Res. 2011; 209 (1): 109–15.

    Article  PubMed  Google Scholar 

  13. Harrison Y, Jones K, Waterhouse J. The influence of time awake and circadian rhythm upon performance on a frontal lobe task. Neuropsychologia 2007; 45 (8): 1966–72.

    Article  PubMed  Google Scholar 

  14. Westling G, Johansson RS. Factors influencing the force control during precision grip. Exp. Brain Res. 1984; 53 (2): 277–84.

    Article  CAS  PubMed  Google Scholar 

  15. Jaric S, Knight CA, Collins JJ, Marwaha R. Evaluation of a method for bimanual testing coordination of hand grip and load forces under isometric conditions. J. Electromyogr. Kinesiol. 2005; 15 (6): 556–63.

    Article  PubMed  Google Scholar 

  16. Flanagan JR, Wing AM. The stability of precision grip forces during cyclic arm movements with a hand-held load. Exp. Brain Res. 1995; 105 (3): 455–64.

    CAS  PubMed  Google Scholar 

  17. Blakemore SJ, Goodbody SJ, Wolpert DM. Predicting the consequencesofour own actions: the roleof sensorimotor context estimation. J. Neurosci. 1998; 18 (18): 7511–8.

    CAS  PubMed  Google Scholar 

  18. Ehrsson HH, Fagergren A, Johansson RS, Forssberg H. Evidence for the involvement of the posterior parietal cortex in coordination of fingertip forces for grasp stability in manipulation. J. Neurophysiol. 2003; 90 (5): 2978–86.

    Article  PubMed  Google Scholar 

  19. Ehrsson HH, Fagergren A, Ehrsson GO, Forssberg H. Holding an object: neural activity associated with fingertip force adjustments to external perturbations. J. Neurophysiol. 2007; 97 (2): 1342–52.

    Article  PubMed  Google Scholar 

  20. Menz MM, Buchel C, Peters J. Sleep deprivation is associated with attenuated parametric valuation and control signals in the midbrain during value-based decision making. J. Neurosci. 2012; 32 (20): 6937–46.

    Article  CAS  PubMed  Google Scholar 

  21. Mu Q, Nahas Z, Johnson KA et al. Decreased cortical response to verbal working memory following sleep deprivation. Sleep 2005; 28 (1): 55–67.

    PubMed  Google Scholar 

  22. Bertolazi AN, Fagondes SC, Hoff LS et al. Validation of the Brazilian Portuguese version of the Pittsburgh Sleep Quality Index. Sleep Med. Clin. 2011; 12 (1): 70–5.

    Article  Google Scholar 

  23. Horne JA, Ostberg O. A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms. Int. J. Chronobiol. 1976; 4 (2): 97–110.

    CAS  PubMed  Google Scholar 

  24. de Freitas PB, Lima KC. Grip force control during simple manipulation tasks in non-neuropathic diabetic individuals. Clin. Neurophysiol. 2013; 124 (9): 1904–10.

    Article  PubMed  Google Scholar 

  25. de Freitas PB, Krishnan V, Jaric S. Force coordination in object manipulation. J. Hum. Kinet. 2008; 20: 37–51.

    Article  Google Scholar 

  26. Rost K, Nowak DA, Timmann D, Hermsdorfer J. Preserved and impaired aspects of predictive grip force control in cerebellar patients. Clin. Neurophysiol. 2005; 116 (6): 1405–14.

    Article  PubMed  Google Scholar 

  27. Jasper I, Hermsdorfer J. Time-of-day effects on force control during object manipulation. Eur. J. Appl. Physiol. 2007; 101 (4): 437–44.

    Article  PubMed  Google Scholar 

  28. Buysse DJ, Reynolds CF 3rd, Monk TH, Berman SR, Kupfer DJ. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res. 1989; 28 (2): 193–213.

    Article  CAS  PubMed  Google Scholar 

  29. Johansson RS, Westling G. Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects. Exp. Brain Res. 1984; 56 (3): 550–64.

    Article  CAS  PubMed  Google Scholar 

  30. Johansson RS, Westling G. Programmed and triggered actions to rapid load changes during precision grip. Exp. Brain Res. 1988; 71 (1): 72–86.

    CAS  PubMed  Google Scholar 

  31. Kawato M, Kuroda T, Imamizu H, Nakano E, Miyauchi S, Yoshioka T. Internal forward models in the cerebellum: fMRI study on grip force and load force coupling. Prog. Brain Res. 2003; 142: 171–88.

    Article  PubMed  Google Scholar 

  32. Flanagan JR, Wing AM. Modulation of grip force with load force during point-to-point arm movements. Exp. Brain Res. 1993; 95 (1): 131–43.

    Article  CAS  PubMed  Google Scholar 

  33. Lang N, Rothkegel H, Reiber H et al. Circadian modulation of GABA-mediated cortical inhibition. Cereb. Cortex 2011; 21 (10): 2299–306.

    Article  PubMed  Google Scholar 

  34. Jasper I, Roenneberg T, Haussler A, Zierdt A, Marquardt C, Hermsdorfer J. Circadian rhythm in force tracking and in dual task costs. Chronobiol. Int. 2010; 27 (3): 653–73.

    Article  PubMed  Google Scholar 

  35. Monk TH, Buysse DJ, Reynolds CF 3rd et al. Circadian rhythms in human performance and mood under constant conditions. J. Sleep Res. 1997; 6 (1): 9–18.

    Article  CAS  PubMed  Google Scholar 

  36. Liu Y, Higuchi S, Motohashi Y. Changes in postural sway during a period of sustained wakefulness in male adults. Occup. Med. (Lond) 2001; 51 (8): 490–5.

    Article  CAS  Google Scholar 

  37. Manly T, Lewis GH, Robertson IH, Watson PC, Datta A. Coffee in the cornflakes: time-of-day as a modulator of executive response control. Neuropsychologia 2002; 40 (1): 1–6.

    Article  PubMed  Google Scholar 

  38. Landis CA, Savage MV, Lentz MJ, Brengelmann GL. Sleep deprivation alters body temperature dynamics to mild cooling and heating not sweating threshold in women. Sleep 1998; 21 (1): 101–8.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Barbosa de Freitas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pedão, S.T., Aguiar, S.A., Cunha, B.P. et al. Grip and load force control and coordination in object manipulation during a night of sleep deprivation. Sleep Biol. Rhythms 13, 163–171 (2015). https://doi.org/10.1111/sbr.12102

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1111/sbr.12102

Key words

Navigation