Skip to main content
Log in

Imprecise Dirichlet Process With Application to the Hypothesis Test on the Probability That XY

  • Published:
Journal of Statistical Theory and Practice Aims and scope Submit manuscript

Abstract

The Dirichlet process (DP) is one of the most popular Bayesian nonparametric models. An open problem with the DP is how to choose its infinite-dimensional parameter (base measure) in case of lack of prior information. In this work, we present the imprecise DP (IDP)—a prior near-ignorance DP-based model that does not require any choice of this probability measure. It consists of a class of DPs obtained by letting the normalized base measure of the DP vary in the set of all probability measures. We discuss the tight connections of this approach with Bayesian robustness and in particular prior near-ignorance modeling via sets of probabilities. We use this model to perform a Bayesian hypothesis test on the probability P(XY). We study the theoretical properties of the IDP test (e.g., asymptotic consistency), and compare it with the frequentist Mann-Whitney-Wilcoxon rank test that is commonly employed as a test on P(XY). In particular, we show that our method is more robust, in the sense that it is able to isolate instances in which the aforementioned test is virtually guessing at random.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Augustin, T., and F. Coolen. 2004. Nonparametric predictive inference and interval probability. J. Stat. Plan. Inference, 124(2), 251–272.

    Article  MathSciNet  Google Scholar 

  • Benavoli, A., and M. Zaffalon. 2012. A model of prior ignorance for inferences in the one-parameter exponential family. J. Stat. Plan. Inference, 142(7), 1960–1979.

    Article  MathSciNet  Google Scholar 

  • Benavoli, A., F. Mangili, G. Corani, M. Zaffalon, and F. Ruggeri. 2014. A Bayesian Wilcoxon signed-rank test based on the Dirichlet process. Proceedings of the 32th International Conference on Machine Learning (ICML), 1026–1034.

  • Berger, J. O. 1994. An overview of robust Bayesian analysis with discussion. Test, 3(1), 5–124.

    Article  MathSciNet  Google Scholar 

  • Berger, J. O., D. Rios Insua, and F. Ruggeri. 2000. Bayesian robustness. In Robust Bayesian analysis, ed. D. Rios Insua and F. Ruggeri, vol. 152 of Lecture Notes in Statistics, 1–32. New York, NY: Springer.

    Chapter  Google Scholar 

  • Bernard, J.-M. 2005. An introduction to the imprecise Dirichlet model for multinomial data. Int. J. Approx. Reasoning, 39(23), 123–150.

    Article  MathSciNet  Google Scholar 

  • Blum, J., and V. Susarla. 1977. On the posterior distribution of a dirichlet process given randomly right censored observations. Stochastic Processes Their Appl., 5(3), 207–211. doi: http://dx.doi.org/10.1016/0304-4149(77)90030-8.

    Article  MathSciNet  Google Scholar 

  • Borgwardt, K. M., and Z. Ghahramani. n.d. Bayesian two-sample tests. arXiv preprint arXiv:0906.4032.

  • Chen, Y., and T. E. Hanson. 2014. Bayesian nonparametric k-sample tests for censored and uncensored data. Comput. Stat. Data Anal., 71(C), 335–346.

    Article  MathSciNet  Google Scholar 

  • Coolen, F., and T. Augustin. 2009. A nonparametric predictive alternative to the imprecise Dirichlet model: The case of a known number of categories. Int. J. Approximate Reasoning, 50(2), 217–230.

    Article  MathSciNet  Google Scholar 

  • Coolen, F. P., and S. Bin Himd. 2014. Nonparametric predictive inference for reproducibility of basic nonparametric tests. J. Stat. Theory Pract., 8(4), 591–618.

    Article  MathSciNet  Google Scholar 

  • de Cooman, G., E. Miranda, and E. Quaeghebeur. 2009. Representation insensitivity in immediate prediction under exchangeability. Int. J. Approx. Reasoning, 50(2), 204–216.

    Article  MathSciNet  Google Scholar 

  • Dalal, S., and E. Phadia. 1983. Nonparametric Bayes inference for concordance in bivariate distributions. Commun. Stat. Theory Methods, 12(8), 947–963.

    Article  MathSciNet  Google Scholar 

  • DasGupta, A. 2008. Asymptotic theory of statistics and probability. New York, NY: Springer.

    MATH  Google Scholar 

  • Efron, B. 1979. Bootstrap methods: Another look at the jackknife. Ann. Stat., 7(1), 1–26.

    Article  MathSciNet  Google Scholar 

  • Fay, M. P., and M. A. Proschan. 2010. Wilcoxon-Mann-Whitney or t-test? On assumptions for hypothesis tests and multiple interpretations of decision rules. Stat. Surveys, 4, 1–39.

    Article  MathSciNet  Google Scholar 

  • Ferguson, T. S. 1973. A Bayesian analysis of some nonparametric problems. Ann. Stat., 1(2), 209–230.

    Article  MathSciNet  Google Scholar 

  • Ghosh, J. K., and R. Ramamoorthi. 2003. Bayesian nonparametrics. New York, NY: Springer.

    MATH  Google Scholar 

  • Goodman, S. N. 1999. Toward evidence-based medical statistics. 1: The P-value fallacy. Ann. Internal med., 130(12), 995–1004.

    Article  Google Scholar 

  • Hodges, J. L., and E. L. Lehmann. 1963. Estimates of location based on rank tests. Ann. Math. Stat., 34(2), 598–611.

    Article  MathSciNet  Google Scholar 

  • Holmes, C., F. Caron, J. Griffin, and D. A. Stephens. n.d. Two-sample Bayesian nonparametric hypothesis testing. arXiv preprint arXiv:0910.5060.

  • Jara, A., T. Hanson, F. Quintana, P. Müller, and G. Rosner. 2011. DPpackage: Bayesian semi- and nonparametric modeling in R. J. Stat. Software, 40(5), 1–30.

    Article  Google Scholar 

  • Kruschke, J. K. 2010. Bayesian data analysis. Wiley Interdiscip. Rev. Cognitive Sci., 1(5), 658–676.

    Article  Google Scholar 

  • Lehmann, E. 1998. Elements of large-sample theory, New York, NY: Springer-Verlag.

    Google Scholar 

  • Lehmann, E., and H. J. M. D’Abrera. 1975. Nonparametrics: Statistical methods based on ranks. San Francisco, CA: McGraw-Hill.

    MATH  Google Scholar 

  • Lo, A. Y. 1987. A large sample study of the Bayesian bootstrap. Ann. Stat., 15(1), 360–375.

    Article  MathSciNet  Google Scholar 

  • Ma, L., and W. H. Wong. 2010. Coupling optional Pólya trees and the two sample problem, J. Am. Stat. Assoc., 106(496), 1553–1565.

    Article  Google Scholar 

  • Martin, R., and S. Tokdar. 2012. A nonparametric empirical Bayes framework for large-scale multiple testing. Biostatistics, 13(3), 427–439.

    Article  Google Scholar 

  • Pericchi, L. R., and P. Walley. 1991. Robust Bayesian credible intervals and prior ignorance. Int. Stat. Rev., 58(1), 1–23.

    Article  Google Scholar 

  • Phadia, E. G. 2013. Inference based on complete data. In Prior processes and their applications, 109–153. New York, NY: Springer.

    Chapter  Google Scholar 

  • Raftery, A. E. 1995. Bayesian model selection in social research. Sociol. Methodol., 25, 111–164.

    Article  Google Scholar 

  • Rossi, P., and R. McCulloch. 2010. Bayesm: Bayesian inference for marketing/micro-econometrics, R package version 2-2. http://www.perossi.org/home/bsm-1

  • Rubin, D. B. 1981. Bayesian bootstrap. Ann. Stat., 9(1), 130–134.

    Article  MathSciNet  Google Scholar 

  • Ruggeri, F. 2010. Nonparametric Bayesian robustness. Chilean J. Stat., 2, 51–68.

    MathSciNet  MATH  Google Scholar 

  • Sethuraman, J. 1994. A constructive definition of Dirichlet priors. Stat. Sin., 4(2), 639–650.

    MathSciNet  MATH  Google Scholar 

  • Sethuraman, J., and R. C. Tiwari. 1981. Convergence of Dirichlet measures and the interpretation of their parameter. Defense Technical Information Center.

  • Susarla, V., and J. Van Ryzin. 1976. Nonparametric Bayesian estimation of survival curves from incomplete observations. J. Am. Stat. Assoc., 71(356), 897–902.

    Article  MathSciNet  Google Scholar 

  • Walley, P. 1991. Statistical reasoning with imprecise probabilities. New York, NY: Chapman and Hall.

    Book  Google Scholar 

  • Walley, P. 1996. Inferences from multinomial data: Learning about a bag of marbles. J. R. Stat. Society. Ser. B (Methodological), 58(1), 3–57.

    MathSciNet  MATH  Google Scholar 

  • Weng, C.-S. 1989. On a second-order asymptotic property of the Bayesian bootstrap mean. Ann. Stat., 17(2), 705–710.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessio Benavoli.

Additional information

Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/ujsp.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benavoli, A., Mangili, F., Ruggeri, F. et al. Imprecise Dirichlet Process With Application to the Hypothesis Test on the Probability That XY . J Stat Theory Pract 9, 658–684 (2015). https://doi.org/10.1080/15598608.2014.985997

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1080/15598608.2014.985997

AMS Subject Classification

Keywords

Navigation