Skip to main content
Log in

Enhancing School Mathematics Culturally: A Path of Reconciliation

  • Article
  • Published:
Canadian Journal of Science, Mathematics and Technology Education Aims and scope Submit manuscript

Abstract

Culturally responsive or place-based school mathematics that focuses on Indigenous students has an established presence in the research literature. This culture-based innovation represents a historical shift from conventional approaches to mathematics education. Moreover, it has demonstratively advanced theacademic achievement forboth Indigenousand non-Indigenous students.

Its success has exposed deep fault lines in conventional school mathematics. Many mathematics educators unknowingly embrace problematic, taken-for-granted notions about their school subject that inhibit student engagement and contribute to Indigenous students’low graduation rates. However, innovative researchers and teachers have adapted or developed culture-based teaching materials and strategies that significantly reduce the problems inherent in conventional school mathematics. As a result, these innovators’ actions challenge standard curricula and instruction.

These changes coincide with another profound transformation taking place in countries with Indigenous citizens. In response to having kidnapped Indigenous children and held them in residential schools in an attempt to rid them of their Indigenous self-identities, Canada’s federal government apologized in 2008 and established a process of reconciliation (Truth and Reconciliation Commission, 2016) for all Canadians.

Accordingly, this article has two main goals: to (a) illustrate how critical analysis can help educators decide which taken-for-granted notions about school mathematics should continue to be embraced and which ones should be updated because they interfere with the engagement and achievement of most Indigenous students and a majority of non-Indigenous students and (b) identify concrete ways in which mathematics educators, researchers, and curriculum writers can help enhance school mathematics by drawing upon how mathematics is used in both mainstream and Indigenous cultures and in a way that simultaneously promotes both academic achievement and reconciliation. These goals lead to the following questions answered in this article:

  • 1 What conventional taken-for-granted notions impede student achievement?

  • 2 Which of these conventional notions continue to be held by many innovators who have enhanced school mathematics culturally?

  • 3 Which innovative taken-for-granted notions improve student academic achievement?

  • 4 Exactly how do researchers or teachers “see” school mathematics content “embedded” in an Indigenous artisan handwork or activity?

  • 5 Which notions found in conventional school mathematics continue to serve students’ interests?

  • 6 How can mathematics curricula mitigate systemic racism and support reconciliation?

  • 7 What specific actions can mathematics teachers, researchers, teacher educators, and curriculum writers take to regenerate what is essentially a Victorian-era, 19th-century elitist curriculum (for Grades 5 and higher) to a 21st-century curriculum in harmony with today’s realities?

The article advances a pluralist mathematics perspective that makes explicit the cultural nature of school mathematics within an Indigenous cross-cultural framework of respect and collaboration. Mathematics’cultural nature becomes both a context of instruction and content expressed in a curriculum.

Résumé

L’enseignement culturellement sensible des mathématiques à l’école, centré sur les étudiants autochtones, a maintenant une place établie dans la littérature de recherche. Cette innovation fondée sur la culture représente un changement historique par rapport aux approches conventionnelles en enseignement des mathématiques. De plus, il est démontré qu’elle a favorisé le succès scolaire des étudiants autochtones et non autochtones. Son succès a mis en lumière de graves lacunes dans l’enseignement traditionnel des mathématiques à l’école. En efet, de nombreux enseignants de mathématiques adoptent sans le vouloir des notions problématiques, tenues pour acquises, de leur matière scolaire, qui gênent la participation des étudiants et contribuent aux résultats médiocres des élèves autochtones. Cependant, des chercheurs et des enseignants innovateurs se sont adaptés et ont mis au point des ressources pédagogiques et des stratégies d’enseignement qui tiennent compte de la culture des étudiants et réduisent la portée des problèmes inhérents à l’enseignement conventionnel des mathématiques à l’école. Ce faisant, ces innovateurs remettent en question les curriculums et les programmes d’enseignement standards.

De tels changements coïncident avec une autre transformation qui a eu lieu dans d’autres pays qui ont une population autochtone. Après avoir kidnappé des enfants autochtones et les avoir internés dans des pensionnats afn de les priver de leur identité autochtone, le gouvernement fédéral du Canada a présenté des excuses ofcielles en 2008 et a entrepris un processus de réconciliation (Commission de vérité et réconciliation, 2016) pour tous les Canadiens. Cet article a donc deux objectifs principaux: (a) illustrer comment l’analyse critique peut aider les enseignants à décider quelles sont, parmi les notions tenues pour acquises en enseignement des mathématiques à l’école, celles qu’il faut garder et quelles sont celles qu’il convient de réviser parce qu’elles entravent la participation et le succès scolaire de la plupart des élèves autochtones ainsi que ceux d’une bonne partie des élèves non autochtones; et (b) identifer des moyens concrets pour que les enseignants de mathématiques, les chercheurs et les auteurs des curriculums puissent contribuer à améliorer les mathématiques à l’école en tirant proft des façons dont on se sert des mathématiques aussi bien dans la culture majoritaire que dans les cultures autochtones, et ce de façon à promouvoir à la fois le succès scolaire et la réconciliation. Ces objectifs m’amènent aux questions suivantes, auxquelles je réponds dans l’article:

  • 1 Quelles sont, parmi les notions conventionnelles tenues pour acquises, celles qui entravent le succès scolaire des étudiants?

  • 2 Lesquelles de ces notions conventionnelles continuent d’être soutenues par de nombreux innovateurs qui ont contribué à l’avancement culturel des mathématiques à l’école?

  • 3 Quelles sont, parmi les notions conventionnelles tenues pour acquises, celles qui favorisent le succès scolaire des étudiants?

  • 4 Comment les enseignants et les chercheurs voient-ils les contenus mathématiques à l’école comme « parties intégrantes » du travail ou des activités d’un artisan autochtone?

  • 5 Quelles sont, parmi les notions conventionnelles tenues pour acquises en enseignement des mathématiques à l’école, celles qui continuent de servir les intérêts des étudiants?

  • 6 Comment les curriculums de mathématiques peuvent-ils atténuer le racisme systémique et favoriser la réconciliation?

  • 7 Quelles actions les enseignants, les chercheurs, les didacticiens et les auteurs des curriculums de mathématiques peuvent-ils entreprendre pour faire évoluer ce qui est essentiellement un curriculum élitiste de l’ère victorienne (à partir de la 5e année scolaire) vers un curriculum du 21e siècle qui soit en harmonie avec les réalités d’aujourd’hui?

L’article met de l’avant une perspective pluraliste qui rend explicite la nature culturelle des mathématiques à l’école dans un cadre interculturel autochtone de respect et de collaboration. Ainsi, la nature culturelle des mathématiques devient aussi bien un contexte d’éducation qu’un contenu exprimé dans le cadre d’un curriculum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • 8 Ways. (2012). 8Ways: Aboriginal pedagogy from western New South Wales. Dubbo, NSW, Australia: The Bangamalanha Centre.

    Google Scholar 

  • Adams, B. A. (2016, March 19). “Serious” cash for [A]boriginal children likely. Saskatoon StarPhoenix. Retrieved from https://doi.org/thestarphoenix.com/news/local-news/serious-cash-to-correct-discrimination-against-aboriginal-children-likely-in-budget-law-prof-says

    Google Scholar 

  • Adams, B. L., Shehenaz Adam, A., & Opbroek, M. (2005). Reversing the academic trend for rural students: The case of Michelle Opbroek. Journal of American Indian Education, 44(3), 55–79.

    Google Scholar 

  • Aikenhead, G. S. (1997). Toward a First Nations cross-cultural science and technology curriculum. Science Education, 81(2), 217–238.

    Google Scholar 

  • Aikenhead, G. S. (2002a). Cross-cultural science teaching: “Rekindling traditions” for Aboriginal students. Canadian Journal of Science, Mathematics and Technology Education, 2(3), 287–304.

    Google Scholar 

  • Aikenhead, G. S. (2002b). The educo-politics of curriculum development. Canadian Journal of Science, Mathematics and Technology Education, 2, 49–57.

    Google Scholar 

  • Aikenhead, G. S. (2006). Science education for everyday life: Evidence-based practice. New York, NY: Teachers College Press.

    Google Scholar 

  • Aikenhead, G. S. (2008). Objectivity: The opiate of the academic? Cultural Studies of Science Education, 3(3), 581–585.

    Google Scholar 

  • Aikenhead, G. S. (2017). School mathematics for reconciliation: From a 19th to a 21st century curriculum. Retrieved from https://doi.org/www.usask.ca/education/documents/profles/aikenhead/index.htm

    Google Scholar 

  • Aikenhead, G. S., Brokofsky, J., Bodnar, T., Clark, C., Foley, C., … Strange, G. (2014). Enhancing school science with Indigenous knowledge: What we know from teachers and research. Saskatoon, SK, Canada: Saskatoon Public School Division with Amazon.ca. Retrieved from https://doi.org/www.amazon.ca/Enhancing-School-Science-Indigenous-Knowledge/dp/149957343X

    Google Scholar 

  • Aikenhead, G. S., & Elliott, D. (2010). An emerging decolonizing science education in Canada. Canadian Journal of Science, Mathematics and Technology Education, 10, 321–338.

    Google Scholar 

  • Aikenhead, G. S., & Michell, H. (2011). Bridging cultures: Indigenous and scientific ways of knowing nature. Toronto, ON, Canada: Pearson Education Canada.

    Google Scholar 

  • Aikenhead, G. S., & Ogawa, M. (2007). Indigenous knowledge and science revisited. Cultural Studies of Science Education, 2(3), 539–591.

    Google Scholar 

  • Alaska Native Knowledge Network. (2016). Publications. Fairbanks, AK: Author. Retrieved from https://doi.org/ankn.uaf.edu/publications/

    Google Scholar 

  • Alberta Education. (2006). Common curriculum framework for K—9 mathematics: Western and Northern Canadian protocol. Edmonton, AB, Canada: Author.

    Google Scholar 

  • Anderson, B., & Richards, J. (2016). Students in jeopardy: An agenda for improving results in band-operated schools (Commentary 444). Toronto, ON, Canada: C.D. Howe Institute. Retrieved from https://doi.org/www.cdhowe.org/

    Google Scholar 

  • Anyon, J. (1980). Social class and the hidden curriculum of work. Journal of Education, 162(1), 67–92.

    Google Scholar 

  • Ascher, M. (1991). Ethnomathematics: A multicultural view of mathematical ideas. New York, NY: CRC Press.

    Google Scholar 

  • Ball, P. (2013, December 16). Polynesian people used binary numbers 600 years ago. Nature. Retrieved from https://doi.org/www.scientificamerican.com/article/polynesian-people-used-binary-numbers-600-years-ago/

    Google Scholar 

  • Bang, M., & Medin, D. (2010). Cultural processes in science education: Supporting the navigation of multiple epistemolo-gies. Science Education, 94, 1009–1026.

    Google Scholar 

  • Banks, J. A. (2004). Multicultural education: Historical development, dimensions, and practice. In J. A. Banks (Ed.), Handbook of research on multicultural education (2nd ed., pp. 32–29). San Francisco, CA: Jossey-Bass.

    Google Scholar 

  • Barton, B., & Fairhall, U. (1995, July). Is mathematics a Trojan horse? Mathematics in Māori education. Paper presented at the History and Pedagogy of Mathematics Conference, Cairns, Australia.

    Google Scholar 

  • Battiste, M. (1986). Micmac literacy and cognitive assimilation. In J. Barman, Y. Herbert, & Y. D. McCaskell (Eds.), Indian education in Canada: Vol. 1. The legacy (pp. 23–44). Vancouver, BC, Canada: University of British Columbia Press.

    Google Scholar 

  • Battiste, M. (2002). Indigenous knowledge and pedagogy in First Nations education: A literature review with recommendation. Ottawa, ON, Canada: Indian and Northern Affairs.

    Google Scholar 

  • Battiste, M. (2013). Decolonizing education: Nourishing the learning spirit. Saskatoon, SK, Canada: Purich Publishing.

    Google Scholar 

  • Battiste, M., & Henderson, J. Y. (2000). Protecting Indigenous knowledge and heritage. Saskatoon, SK, Canada: Purich Publishing.

    Google Scholar 

  • Beatty, R., & Blair, D. (2015). Indigenous pedagogy for early mathematics: Algonquin looming in a Grade 2 math classroom. The International Journal of Holistic Early Learning and Development, 1, 3–24.

    Google Scholar 

  • Beaudet, G. (1995). Nehiyawe mina Akayasimo, Akayasimo mina Nehiyawe ayamiwini masinahigan [Cree–English dictionary]. Winnipeg, MB, Canada: Wuerz Publishing.

    Google Scholar 

  • Belczewski, A. (2009). Decolonizing science education and the science teacher: A White teacher’s perspective. Canadian Journal of Science, Mathematics and Technology Education, 9(3), 191–202.

    Google Scholar 

  • Bishop, A. J. (1988a). Mathematical enculturation: A cultural perspective on mathematics education. Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Bishop, A. J. (1988b). The interactions of mathematics education with culture. Cultural Dynamics, 1(2), 145–157.

    Google Scholar 

  • Bishop, A. J. (1990). Western mathematics: The secret weapon of cultural imperialism. Thousand Oaks, CA: SAGE. Retrieved from https://doi.org/rac.sagepub.com/search/results?fulltext=Alan+Bishop&x=10&y=8&submit=yes&journal_set=sprac& src=selected&andorexactfulltext=and

    Google Scholar 

  • Bolter, J. D. (1984). Turing’s man: Western culture in the computer age. New York, NY: Viking Penguin.

    Google Scholar 

  • Boylan, M. (2016). Ethical dimensions of mathematics education. Educational Studies in Mathematics, 92(3), 395–409.

    Google Scholar 

  • Bradley, C., & Taylor, L. (2002). Exploring American Indian and Alaskan Native cultures and mathematics learning. In J. E. Hankes & F. R. Fast (Eds.), Changing the faces of mathematics: Perspectives on Indigenous people of North America (pp. 49–56). Reston, VA: National Council of Teachers of Mathematics.

    Google Scholar 

  • Bronowski, J. (1973). The ascent of man. Toronto, ON, Canada: Little, Brown and Company.

    Google Scholar 

  • Cajete, G. A. (2000). Native science: Natural laws of interdependence. Santa Fe, NM: Clear Light.

    Google Scholar 

  • Centre on International Education Benchmarking (CIEB). (2015). Performance, equity and efficiency: Top ten PISA performance. Washington, DC: Author. Retrieved from https://doi.org/www.ncee.org/2015/01/statistic-of-the-month-education-performance-equity-and-efficiency/

    Google Scholar 

  • Charette, R. N. (2013, August 30). The STEM crisis is a myth. IEEE Spectrum. Retrieved from https://doi.org/spectrum.ieee.org/at-work/education/the-stem-crisis-is-a-myth

    Google Scholar 

  • Chinn, P. W. U. (2007). Decolonizing methodologies and Indigenous knowledge: The role of culture, place and personal experience in professional development. Journal of Research in Science Teaching, 44(9), 1247–1268.

    Google Scholar 

  • Cobern, W. W. (2000). Everyday thoughts about nature. Boston, MA: Kluwer Academic.

    Google Scholar 

  • Collins English Dictionary. (3rd ed.). (1994). Glasgow, Scotland: HarperCollins Publishers.

  • Corrigan, D., Gunstone, R., Bishop, A., & Clarke, B. (2004, July). Values in science and mathematics education: Similarities, differences and teacher views. Paper presented at the 35th annual meeting of the Australasian Science Education Research Association, Armidale, NSW, Australia.

    Google Scholar 

  • Cuthand, D. (2012, September 7). Ottawa spin cannot ease growing resentment. The Saskatoon StarPhoenix. Retrieved from https://doi.org/www.pressreader.com/canada/the-starphoenix/20120907/281711201833692

    Google Scholar 

  • D’Ambrosio, U. (1991). On ethnoscience. Campinas, Brazil: Interdisciplinary Center for the Improvement of Science Education.

    Google Scholar 

  • D’Ambrosio, U. (2003). Stakes in mathematics education for the societies of today and tomorrow. Monographie de L’Enseignement Mathématique, 39, 301–316.

    Google Scholar 

  • D’Ambrosio, U. (2006). Ethnomathematics link between traditions and modernity (A. Kepple, Trans.). Rotterdam, The Netherlands: SensePublishers.

  • D’Ambrosio, U. (2007). Peace, social justice and ethnomathematics. In B. Sriraman (Ed.), The Montana Mathematics Enthusiast, Monograph 1 (pp. 25–34). Butte, MT: Montana Council of Teachers of Mathematics. Retrieved from https://doi.org/www.google.ca/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjH4Y XU0bjTAhVKw4MKHWozDX0QFgglMAA&url=http%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fdownload %3Fdoi%3D10.1.1.503.9296%26rep%3Drep1%26type%3Dpdf&usg=AFQjCNHkqgpQ4SshCEo7HRgYmMonnSO7 wg&sig2=haGIsImAYyVv4TOjbND2qQ

    Google Scholar 

  • D’Ambrosio, U. (2016). Ethnomathematics: A response to the changing role of mathematics in society. In P. Ernest, B. Sriraman, & N. Ernest (Eds.), Critical mathematics education: Theory, praxis and reality (pp. 23–34). Charlotte, NC: Information Age Publishing.

    Google Scholar 

  • Daschuk, J. (2013). Clearing the plains: Disease, politics of starvation, and the loss of Aboriginal life. Regina, SK, Canada: University of Regina Press.

    Google Scholar 

  • Davison, D. M. (2002). Teaching mathematics to American Indian students: A cultural approach. In J. E. Hankes & F. R. Fast (Eds.), Changing the faces of mathematics: Perspectives on Indigenous people of North America (pp. 19–24). Reston, VA: National Council of Teachers of Mathematics.

    Google Scholar 

  • Deloria, V. (1992). Relativity, relatedness and reality. Winds of Change, 7, 35–40.

    Google Scholar 

  • Director, B. (2006). On the 375th anniversary of Kepler’s passing. FIDELIO Magazine, 15(1–2), 98–113. Retrieved from https://doi.org/www.schillerinstitute.org/fd_02-06/2006/061-2_375_Kepler.html

    Google Scholar 

  • Donald, D., Glanfield, F., & Sterenberg, G. (2011). Culturally relational education in and with an Indigenous community. in education, 17(3), 72–83.

    Google Scholar 

  • Doolittle, E. (2006). Mathematics as medicine. In P. Liljedahl (Ed.), Proceedings of the annual meeting of the Canadian Mathematics Education Study Group (pp. 17–25). Calgary, AB, Canada: University of Calgary.

    Google Scholar 

  • Doolittle, E., & Glanfield, F. (2007). Balancing equations and culture: Indigenous educators reffect on mathematics education. For the Learning of Mathematics, 27(3), 27–30.

    Google Scholar 

  • Einstein, A. (1921, January). Geometry and experience. Paper presented to the Prussian Academy of Science, Berlin, Germany. Retrieved from https://doi.org/todayinsci.com/E/Einstein_Albert/EinsteinAlbert-MathematicsAndReality.htm

    Google Scholar 

  • Einstein, A. (1930, November 9). Albert Einstein über Kepler. Frankfurter Zeitung.

    Google Scholar 

  • Elmore, R. F. (2003, March). Large-scale improvement of teaching and learning: What we know, what we need to know. Paper presented at the annual meeting of the National Association for Research in Science Teaching, Philadelphia, PA.

    Google Scholar 

  • Enyedy, N., Danish, J. A., & Fields, D. A. (2011). Negotiating the “relevant” in culturally relevant mathematics. Canadian Journal of Science, Mathematics and Technology Education, 11(3), 273–291.

    Google Scholar 

  • Ernest, P. (1988). The impact of beliefs on the teaching of mathematics. Retrieved from https://doi.org/webdoc.sub.gwdg.de/edoc/e/pome/impact.htm

    Google Scholar 

  • Ernest, P. (1991). The philosophy of mathematics education. London, England: Routledge-Falmer. Retrieved from https://doi.org/p4mriunpat.fles.wordpress.com/2011/10/the-philosophy-of-mathematics-education-studies-in-mathematicseducation.pdf

    Google Scholar 

  • Ernest, P. (2013). What is “first philosophy” in mathematics education? The Philosophy of Mathematics Education Journal, 27. Retrieved from https://doi.org/people.exeter.ac.uk/PErnest/pome27/index.html

  • Ernest, P. (2016a). Mathematics education ideologies and globalization. In P. Ernest, B. Sriraman, & N. Ernest (Eds.), Critical mathematics education: Theory, praxis and reality (pp. 35–79). Charlotte, NC: Information Age Publishing.

    Google Scholar 

  • Ernest, P. (2016b). The problem of certainty in mathematics. Educational Studies in Mathematics, 92, 379–393.

    Google Scholar 

  • Ethnomathematics and STEM Institute. (2016). University of Hawai’i at Mānoa and West O’ahu. Retrieved from https://doi.org/ethnomath.coe.hawaii.edu/index.php

    Google Scholar 

  • First Nations Education Steering Committee. (2011). Teaching mathematics in a First Peoples context: Grades 8 and 9. Vancouver, BC, Canada: Author. Retrieved from https://doi.org/www.finesc.ca/wordpress/wp-content/uploads/2015/05/PUB-LFP-Math-First-Peoples-8-9-for-Web.pdf

    Google Scholar 

  • Fisher, D. (2017). Reorganizing algebraic thinking: An introduction to dynamic system modeling. The Mathematics Enthusiast, 14, 347–370.

    Google Scholar 

  • Fowler, H. H. (2012). Collapsing the fear of mathematics: A study of the effects of Navajo culture on Navajo student performance in mathematics. In S. T. Gregory (Ed.), Voices of Native American educators (pp. 99–129). Lanham, MD: Lexington Books.

    Google Scholar 

  • François, K., & Van Kerkhove, B. (2010). Ethnomathematics and the philosophy of mathematics (education). In B. Löwe & T. Müller (Eds.), Philosophy of mathematics: sociological aspects and mathematical practice (pp. 121–154). London, England: College Publications.

    Google Scholar 

  • Furuto, H. L. (2012). Ethnomathematics curriculum textbook: Precalculus, trigonometry, and analytic geometry. Honolulu, HI: University of Hawai’i SEED Ofce and the National Science Foundation.

    Google Scholar 

  • Furuto, H. L. (2013a). Bridging policy and practice with ethnomathematics. Journal of Mathematics & Culture, 7, 31–57.

    Google Scholar 

  • Furuto, H. L. (2013b). Ethnomathematics curriculum textbook: Symbolic reasoning and quantitative literacy. Honolulu, HI: University of Hawai’i SEED Ofce and the National Science Foundation.

    Google Scholar 

  • Furuto, H. L. (2014). Pacific ethnomathematics: Pedagogy and practices in mathematics education. Teaching Mathematics and Its Applications, 33(2), 110–121.

    Google Scholar 

  • Furuto, H. L. (in press). Mathematics education on a worldwide voyage. Cultural Studies of Science Education, 11.

  • Fyhn, A. B. (2009, January). Sámi culture and algebra in the curriculum. In V. Durand-Guerrier, S. Soury-Lavergne, & F. Arzarello (Eds.), Proceedings of the annual meeting of the European Society for Research in Mathematics Education 6 (pp. 489–498). Lyon, France.

    Google Scholar 

  • Fyhn, A. B. (2013). Sámi culture and values: A study of the national mathematics exam for the compulsory school in Norway. Interchange, 44, 349–367.

    Google Scholar 

  • Fyhn, A. B., Sara Eira, E. J., & Sriraman, B. (2011). Perspectives on Sámi mathematics education. Interchange, 42(2), 185–203.

    Google Scholar 

  • Garroutte, E. M. (1999). American Indian science education: The second step. American Indian Culture and Research Journal, 23(4), 91–114.

    Google Scholar 

  • Gibbs, W. W., & Fox, D. (1999, October). The false crises in science education. Scientific American, 87–93.

    Google Scholar 

  • Government of Alberta. (2010). Connecting the dots: Aboriginal workforce and economic development in Alberta. Edmonton, AB, Canada: Author. Retrieved from https://doi.org/work.alberta.ca/documents/connecting-the-dots-aboriginal-workforce.pdf

    Google Scholar 

  • Greer, B., Mukhopadhyay, S., Powell, A. B., & Nelson-Barber, S. (Eds.). (2009). Culturally responsive mathematics education. New York, NY: Routledge.

    Google Scholar 

  • Greer, B., & Skovsmose, O. (2012). Introduction: Seeing the cage: The emergence of critical mathematics education. In O. Skovsmose & B. Greer (Eds.), Opening the cage: Critiques and politics of mathematics education. Boston, MA: Sense Publishers.

    Google Scholar 

  • Hall, E. T. (1976). Beyond culture. Toronto, ON, Canada: Doubleday.

    Google Scholar 

  • Hatcher, A., Bartlett, C., Marshall, A., & Marshall, M. (2009). Two-eyed seeing in the classroom environment: Concepts, approaches, and challenges. Canadian Journal of Science, Mathematics and Technology Education, 9, 141–153.

    Google Scholar 

  • Hogue, M. (2011). Narratively speaking: Oscillating in the liminal space of science education between two worlds (Unpublished doctoral dissertation). University of Calgary, Calgary, AB, Canada.

    Google Scholar 

  • Hogue, M. (2013). Building bridges: Teaching science through theatre. Education Canada, 53(4), 1–3.

    Google Scholar 

  • Hough, L. (2015, Fall). There is no average. Harvard Ed. Magazine, 21–27.

    Google Scholar 

  • Irvine, J. (2017). Problem posing in consumer mathematics classes: Not just for future mathematicians. The Mathematics Enthusiast, 14, 387–412.

    Google Scholar 

  • Ishimaru, A. M., Barajas-López, F., & Bang, M. (2015). Centering family knowledge to develop children’s empowered mathematics identities. Journal of Family Diversity in Education, 1(4), 1–21.

    Google Scholar 

  • Jannok Nutti, Y. J. (2010). Grouse steps towards front line knowledge in Sámi mathematics—Teachers’ perspective on transformations activities in Sámi preschool and Sámi school (Unpublished doctoral thesis). Luleå University of Technology, Department of Education (in Norwegian), Luleå, Sweden.

    Google Scholar 

  • Jannok Nutti, Y. J. (2013). Indigenous teachers’ experiences of the implementation of culture-based mathematics activities in Sámi schools. Mathematics Education Research Journal, 25(1), 57–72.

    Google Scholar 

  • Jorgensen, R. (2016). The elephant in the room: Equity, social class, and mathematics. In P. Ernest, B. Sriraman, & N. Ernest (Eds.), Critical mathematics education: Theory, praxis and reality (pp. 127–145). Charlotte, NC: Information Age.

    Google Scholar 

  • Jorgensen, R., & Wagner, D. (2013). Mathematics education with/for [I]ndigenous peoples. Mathematics Education Research Journal, 25(1), 1–3.

    Google Scholar 

  • Kawasaki, K. (2002). A cross-cultural comparison of English and Japanese linguistic assumptions influencing pupils’ learning of science. Canadian and International Education, 31(1), 19–51.

    Google Scholar 

  • Keene, A. (2016). Exploring the fine line between appreciation and appropriation [podcast]. Retrieved from https://doi.org/www.cbc.ca/radio/popup/audio/listen.html?autoPlay=true&clipIds=&mediaIds=2685100624&contentarea= radio&subsection1=radio1&subsection2=currentafairs&subsection3=unreserved&contenttype=audio&title=2016 /03/13/1.3485476-exploring-the-fine-line-between-appreciation-and-appropriation&contentid=1.3485476

    Google Scholar 

  • Kinew, W. (2015). The reason you walk. Toronto, Canada: The Penguin Group (Viking).

    Google Scholar 

  • King, T. (2012). The inconvenient Indian: A curious account of Native people in North America. Toronto, ON, Canada: Doubleday Canada.

    Google Scholar 

  • Kovach, M. (2009). Indigenous methodologies: Characteristics, conversations, and contexts. Toronto, ON, Canada: University of Toronto Press.

    Google Scholar 

  • Larson, M. (2016, September 15). A renewed focus on access, equity, and empowerment. Retrieved from https://doi.org/www.nctm.org/News - and - Calendar / Messages - from - the - President / Archive / Matt - Larson / A - Renewed - Focus-on-Access,-Equity,-and-Empowerment/

    Google Scholar 

  • Lipka, J. (1994). Culturally negotiated schooling: Toward a Yup’ik mathematics. Journal of American Indian Education, 33(3), 14–30.

    Google Scholar 

  • Lipka, J., & Adams, B. (2004). Culturally based math education as a way to improve Alaska Native students’ math performance (Working Article No. 20). Athens, OH: Appalachian Center for Learning, Assessment, and Instruction in Mathematics.

    Google Scholar 

  • Lipka, J., & Andrew-Irhke, D. (2009). Ethnomathematics applied to classrooms in Alaska: Math in a Cultural Context. NASGEm Newsletter, 3.1, 8–10.

    Google Scholar 

  • Lipka, J., Mohatt, G., & The Ciulistet Group. (1998). Transforming the culture of schools: Yup’ik Eskimo examples. Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Lipka, J., Sharp, N., Adams, B., & Sharp, F. (2007). Creating a third space for authentic biculturalism: Examples from math in a cultural context. Journal of American Indian Education, 46(3), 94–115.

    Google Scholar 

  • Lipka, J., Sharp, N., Brenner, B., Yanez, E., & Sharp, F. (2005). The relevance of culturally based curriculum and instruction: The case of Nancy Sharp. Journal of American Indian Education, 44(3), 31–54.

    Google Scholar 

  • Lipka, J., Webster, J. P., & Yanez, E. (2005). Factors that afect Alaska Native students’ mathematical performance. Journal of American Indian Education, 44(3), 1–8.

    Google Scholar 

  • Lipka, J., Wong, M., & Andrew-Irhke, D. (2013). Alaska Native Indigenous knowledge: Opportunities for learning mathematics. Mathematics Education Research Journal, 25(1), 129–150.

    Google Scholar 

  • Lipka, J., Yanez, E., Andrew-Irhke, D., & Adam, S. (2009). A two-way process for developing effective culturally based math: Examples from math in a cultural context. In B. Greer, S. Mukhopadhyay, A. B. Powell, & S. Nelson-Barber (Eds.), Culturally responsive mathematics education (pp. 257–280). New York, NY: Routledge.

    Google Scholar 

  • Little Bear, L. (2000). Jagged worldviews colliding. In M. Battiste (Ed.), Reclaiming Indigenous voice and vision (pp. 77–85). Vancouver, BC, Canada: University of British Columbia Press.

    Google Scholar 

  • Lowan-Trudeau, G. (2015). Contemporary studies in environmental and Indigenous pedagogies: A curricula of stories and place. Environmental Education Research, 21, 652–653.

    Google Scholar 

  • Lunney Borden, L. (2013). What’s the word for … ? Is there a word for … ? How understanding Mi’kmaw language can help support Mi’kmaw learners in mathematics. Mathematics Education Research Journal, 25, 5–22.

    Google Scholar 

  • Lunney Borden, L. (2015). Learning mathematics through birch bark biting: Affirming Indigenous identity. In S. Mukhopadhyay & B. Greer (Eds.), Proceedings of the 8th international Mathematics Education and Society conference (Vol. 3, pp. 756–768). Portland, OR.

    Google Scholar 

  • Lunney Borden, L., & Wagner, D. (2017). Mawkinumasultinej: Let’s learn together! Antigonish, NS, and St. John, NB, Canada. Retrieved from https://doi.org/showmeyourmath.ca/

    Google Scholar 

  • Lunney Borden, L., Wagner, D., & Johnson, N. (2017). Show me your math: Mi’kmaw community members explore mathematics. In C. Nicol, S. Dawson, J. Archibald, & F. Glanfield (Eds.), Living culturally responsive mathematics curriculum and pedagogy: Making a difference with/in Indigenous communities. Rotterdam, The Netherlands: Sense Publishers.

    Google Scholar 

  • Lunney Borden, L., & Wiseman, D. (2016). Considerations from places where Indigenous and Western ways of knowing, being, and doing circulate together: STEM as artifact of teaching and learning. Canadian Journal of Science, Mathematics and Technology Education, 16(2), 140–152.

    Google Scholar 

  • Martin, D. B. (2006). Mathematics learning and participating as racialized forms of experience: African American parents speak on the struggle for mathematics literacy. Mathematical Thinking and Learning, 8(3), 197–229.

    Google Scholar 

  • Maryboy, N., Begay, D., & Nichol, L. (2006). Paradox and transformation. Retrieved from https://doi.org/www.indigenousedu.org/WINHEC%20Journal%203-29-06%20Final%20c.pdf

    Google Scholar 

  • Math in a Cultural Context. (2016). Math in a cultural context. Retrieved from https://doi.org/www.uaf.edu/mcc/

    Google Scholar 

  • McKinley, E. (2001). Cultural diversity: Masking power with innocence. Science Education, 85(1), 74–76.

    Google Scholar 

  • McMurchy-Pilkington, C., & Trinick, T. (2002). Horse power or empowerment? Mathematics curriculum for Maōri—Trojan horse revisited. In B. Barton, K. C. Irwin, M. Pfannkuch, & M. O. J. Thomas (Eds.), Mathematics education in the South Pacific: Proceedings of the 25th annual conference of the Mathematics Education Research Group of Australasia (pp. 465–472). Sydney, Australia: Merga.

    Google Scholar 

  • Meaney, T., Trinick, T., & Fairhall, U. (2012). Collaborating to meet language challenges in Indigenous mathematics classrooms. Dordrecht, The Netherlands: Springer.

    Google Scholar 

  • Medin, D. L., & Bang, M. (2014). Who’s asking? Native science, Western science, and science education. Cambridge, MA: The MIT Press.

    Google Scholar 

  • Michell, H., Vizina, Y., Augustus, C., & Sawyer, J. (2008). Learning Indigenous science from place. Retrieved from https://doi.org/iportal.usask.ca/docs/Learningindigenousscience.pdf

    Google Scholar 

  • Mukhopadhyay, S., & Greer, G. (2012). Ethnomathematics. In J. A. Banks (Ed.), Encyclopedia of diversity in education (pp. 857–861). Thousand Oaks, CA: SAGE.

    Google Scholar 

  • Nasir, N. S., Hand, V., & Taylor, E. V. (2008). Culture and mathematics in school: Boundaries between “cultural” and “domain” knowledge in the mathematics classroom and beyond. Review of Research in Education, 32(1), 187–240.

    Google Scholar 

  • National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston, VA: Author.

    Google Scholar 

  • Nelson-Barber, S., & Trumbull, E. (2007). Making assessment practices valid for Indigenous American students. Journal of American Indian Education, 46(3), 132–147.

    Google Scholar 

  • Nespor, J. (1994). Knowledge in motion: Space, time and curriculum in undergraduate physics and management. Philadelphia, PA: Falmer Press.

    Google Scholar 

  • Newman, J. R. (Ed.). (1956). The world of mathematics. New York, NY: Simon and Schuster. Retrieved from https://doi.org/math.furman.edu/~mwoodard/ascquotn.html

    Google Scholar 

  • Nikolakaki, M. (2016). Mathematics education and citizenship: Critical dimensions. In P. Ernest, B. Sriraman, & N. Ernest (Eds.), Critical mathematics education: Theory, praxis and reality (pp. 273–286). Charlotte, NC: Information Age Publishing.

    Google Scholar 

  • NOVA. (2016). Ethnomathematics. Retrieved from https://doi.org/www.nova.org.au/everything-else/ethnomathematics

    Google Scholar 

  • Ogawa, M. (1995). Science education in a multi-science perspective. Science Education, 79(5), 583–593.

    Google Scholar 

  • Ojalehto, B., & Medin, D. (2015). Emerging trends in culture and concepts. In R. Scott & S. Kosslyn (Eds.), Emerging trends in the social and behavioral sciences. New York, NY: John Wiley & Sons. doi: 10.1002/9781118900772.etrds0064

    Google Scholar 

  • Organization for Economic Cooperation and Development. (2013). PISA 2012 results: What students know and can do—Student performance in mathematics, reading and science (Vol. 1). Paris, France: OECD Publishing. Retrieved from https://doi.org/www.oecd.org/pisa/keyfndings/pisa-2012-results-volume-I.pdf

    Google Scholar 

  • Organization for Economic Cooperation and Development. (2016). PISA 2015 results: Excellence and equity in education (Vol. 1). Paris, France: OECD Publishing. Retrieved from https://doi.org/dx.doi.org/10.1787/9789264266490-en Parker

    Google Scholar 

  • Webster, J., Wiles, P., Civil, M., & Clark, S. (2005). Finding a good ft: Using MCC in a “third space.” Journal of American Indian Education, 44(3), 9–30.

    Google Scholar 

  • Parkin, A. (2015). International report card on public education: Key facts on Canadian achievement and equity. Toronto, ON, Canada: The Environics Institute.

    Google Scholar 

  • Philosophy Department. (2017). Informal fallacies. Texas State University. Retrieved from https://doi.org/www.txstate.edu/philosophy/resources/fallacy-defnitions.html

    Google Scholar 

  • Proust, M. (1923). Remembrance of things past: Vol. 5. The captive (C. K. Scott Moncrief, Trans.). Project Gutenberg Australia. Retrieved from https://doi.org/clearingcustoms.net/2013/12/17/what-marcel-proust-really-said-about-seeing-with-new-eyes/

  • Richards, J., Hove, J., & Afolabi, K. (2008). Understanding the Aboriginal/non-Aboriginal gap in student performance: Lessons from British Columbia (Commentary No. 276). Toronto, ON, Canada: C.D. Howe Institute.

    Google Scholar 

  • Rickard, A. (2005). Constant perimeter, varying area: A case study of teaching and learning mathematics to design a fsh rack. Journal of American Indian Education, 44(3), 80–100.

    Google Scholar 

  • Rigney, L. (1999). Internationalisation of an indigenous anti-colonial cultural critique of research methodologies: A guide to Indigenist research methodology and its principles. WICAZO SA Review, 14(2), 109–121.

    Google Scholar 

  • Rudd, K. (2009, February 26). Closing the Gap report speech to Parliament. The Australian. Retrieved from https://doi.org/www.theaustralian.com.au/archive/apology/kevin-rudds-closing-the-gap-speech/news-story/5ed69819ecb6a42f4fd28e76dceb02a6

    Google Scholar 

  • Russell, G. L. (2010). Racism by numbers. vinculum - Journal of the Saskatchewan Mathematics Teachers’ Society, 2(2), 36–44. Retrieved from https://doi.org/www.smts.ca/wordpress/wp-content/uploads/2014/07/vinculum2-compressed.pdf

    Google Scholar 

  • Russell, G. L. (2016). Valued kinds of knowledge and ways of knowing in mathematics and the teaching and learning of mathematics: A worldview analysis (Unpublished doctoral dissertation). University of Saskatchewan, Saskatoon, SK, Canada.

    Google Scholar 

  • Russell, G. L., & Chernoff, E. J. (2013). The marginalisation of Indigenous students within school mathematics and the math wars: Seeking resolutions within ethical spaces. Mathematics Education Research Journal, 25(1), 109–127.

    Google Scholar 

  • Russell, G. L., & Chernoff, E. J. (2015). Incidents of intrusion: Disruptions of mathematics teaching and learning by the traditional Western worldview. In M. V. Matinez & A. Castro Superfine (Eds.), Proceedings of the 35th annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 1018–1025). Chicago, IL: University of Illinois at Chicago.

    Google Scholar 

  • Sakiestewa-Gilbert, W. (2011). Developing culturally based science curriculum for Native American classrooms. In J. Reyhner, W. Sakiestewa-Gilbert, & L. Lockard (Eds.), Honoring our heritage: Culturally appropriate approaches for teaching Indigenous students (pp. 43–56). Flagstaff, AZ: Northern Arizona University.

    Google Scholar 

  • Salleh, A. (2006). Maths “needs to listen” to other cultures. Ultimo, NSW, Australia: Australian Broadcasting Corporation. Retrieved from https://doi.org/www.abc.net.au/science/articles/2006/02/17/1571700.htm

    Google Scholar 

  • Saskatchewan Curriculum. (2007). Grade 6 mathematics (outcomes and indicators). Retrieved from https://doi.org/www.curriculum.gov.sk.ca/webapps/moe-curriculum-BBLEARN/index.jsp?lang=en&subj=mathematics&level=6

    Google Scholar 

  • Saskatchewan Instructional Development and Research Unit. (2014). Seeking their voices: Improving Indigenous student learning outcomes. Regina, SK, Canada: Author.

    Google Scholar 

  • Saul, J. R. (2014). The comeback. Toronto, ON, Canada: Penguin Canada Books.

    Google Scholar 

  • Serder, M., & Jakobsson, A. (2015). “Why bother so incredibly much?”: Student perspectives on PISA science assignments. Cultural Studies of Science Education, 10(3), 833–853.

    Google Scholar 

  • Sharpe, A., & Arsenault, J.-F. (2009). Investing in Aboriginal education in Canada: An economic perspective (CPRN Research Report). Ottawa, ON, Canada: Canadian Policy Research Networks. Retrieved from https://doi.org/www.cprn.org/documents/51980_EN.pdf

    Google Scholar 

  • Show Me Your Math. (2017). Antigonish, NS, Canada: Author. Retrieved from https://doi.org/showmeyourmath.ca/

    Google Scholar 

  • Sjøberg, S. (2015, August–September). PISA—A global educational arms race? The PISA science assessments and the implications for science education: Uses and abuses (J. Osborne, Chair). Symposium conducted at, Helsinki, Finland.

    Google Scholar 

  • Sjøberg, S. (2016). OECD, PISA, and globalization: The influence of the international assessment regime. In C. H. Tienken & C. A. Mullen (Eds.), Education policy perils: Tackling the tough issues (pp. 102–133). New York, NY: Routledge.

    Google Scholar 

  • Skovsmose, O. (2016). Mathematics: A critical rationality? In P. Ernest, B. Sriraman, & N. Ernest (Eds.), Critical mathematics education: Theory, praxis, and reality (pp. 1–22). Charlotte, NC: Information Age.

    Google Scholar 

  • St. Denis, V. (2004). Real Indians: Cultural revitalization and fundamentalism in Aboriginal education. In C. Schick, J. Jaffe, & A. Watkinson (Eds.), Contesting fundamentalisms (pp. 35–47). Halifax, NS, Canada: Fernwood.

    Google Scholar 

  • Stanford Encyclopedia of Philosophy. (2015). Gödel’s incompleteness theorems. Retrieved from https://doi.org/plato.stanford.edu/entries/goedel-incompleteness/

    Google Scholar 

  • Sterenberg, G., & Hogue, M. (2011). Reconsidering approaches to Aboriginal science and mathematics education. Alberta Journal of Educational Research, 57(1), 1–15.

    Google Scholar 

  • Sterenberg, G., & McDonnell, T. (2010). Indigenous and Western mathematics. vinculum - Journal of the Saskatchewan Mathematics Teachers’ Society, 2(2), 10–22.

    Google Scholar 

  • Sterenberg, G. (2013a). Considering Indigenous knowledges and mathematics curriculum. Canadian Journal of Science, Mathematics and Technology Education, 13(1), 18–32.

    Google Scholar 

  • Sterenberg, G. (2013b). Learning Indigenous and Western mathematics from place. Mathematics Education Research Journal, 25, 91–108.

    Google Scholar 

  • Stoet, G., Bailey, D. H., Moore, A. M., & Geary, D. C. (2016). Countries with higher levels of gender equality show larger national sex differences in mathematics anxiety and relatively lower parental mathematics valuation for girls. PLoS ONE, 11(4), e0153857. doi:10.1371/journal.pone.015

    Google Scholar 

  • Thanh Ha, T., & Galloway, G. (2017, February 14). Ontario judge sides with Sixties Scoop survivors. The Globe and Mail. Retrieved from https://doi.org/www.theglobeandmail.com/news/national/ontario-judge-sides-with-60s-scoop-survivors-damages-to-be-decided/article34015380/

    Google Scholar 

  • Truth and Reconciliation Commission. (2016). A knock on the door. Winnipeg, MB, Canada: University of Manitoba Press.

    Google Scholar 

  • Uegaki, W. (1990). A historical research on the definition of Wasan and Yōsan. Bulletin of the Faculty of Education, Mie University, Educational Science, 50, 13–29.

    Google Scholar 

  • U.S. Congress House of Representatives Subcommittee on Early Childhood, Elementary and Secondary Education. (2008). Challenges facing bureau of Indian education schools in improving student achievement. Washington, DC: U.S. Government Printing Office.

    Google Scholar 

  • Venville, G. J., Wallace, J., Rennie, L. J., & Malone, J. A. (2002). Curriculum integration: Eroding the high ground of science as a school subject? Studies in Science Education, 37(1), 43–83.

    Google Scholar 

  • Verhulst, F. (2012). Mathematics is the art of giving the same name to different things: An interview with Henri Poincaré. NAW, 5/13(3), 154–158.

    Google Scholar 

  • Vickers, P. (2007). Ayaawx: In the path of our ancestors. Cultural Studies of Science Education, 2, 592–598.

    Google Scholar 

  • Wagamese, R. (1994). Keeper’n me. Toronto, ON, Canada: Anchor Canada.

    Google Scholar 

  • Watson, H., & Chambers, D. W. (1989). Singing the land, signing the land. Geelong, VIC, Australia: Deakin University Press.

    Google Scholar 

  • White, L. A. (1959). The evolution of culture. New York, NY: McGraw-Hill.

    Google Scholar 

  • Whorf, B. L. (1959). Language, thought, and reality. New York, NY: John Wiley & Sons.

    Google Scholar 

  • Wikipedia. (2016). Japanese mathematics. Retrieved from https://doi.org/en.wikipedia.org/wiki/Japanese_mathematics

    Google Scholar 

  • Wikipedia. (2017). History of mathematics. Retrieved from https://doi.org/en.wikipedia.org/wiki/History_of_mathematics#Prehistoric_mathematics

    Google Scholar 

  • Wilder, R. L. (1981). Mathematics as a cultural system. Oxford, England: Pergamon Press.

    Google Scholar 

  • Wilson, S. (2008). Research is ceremony: Indigenous research methods. Halifax, NS, Canada: Fernwood.

    Google Scholar 

  • Woolford, A., Benvenuto, J., & Hinton, A. L. (Eds.). (2014). Colonial genocide in Indigenous North America. London, England: Duke University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glen S. Aikenhead.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aikenhead, G.S. Enhancing School Mathematics Culturally: A Path of Reconciliation. Can. J. Sci. Math. Techn. Educ. 17, 73–140 (2017). https://doi.org/10.1080/14926156.2017.1308043

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1080/14926156.2017.1308043

Navigation