Skip to main content
Log in

The Dollar’s Imperial Circle

  • Research Article
  • Published:
IMF Economic Review Aims and scope Submit manuscript

Abstract

In this paper, we highlight a new channel through which dollar fluctuations can become a self-fulfilling pro-cyclical force. We call this mechanism Imperial Circle as it makes the dollar the dominant macroeconomic variable in the context of the current international monetary system. At the core of it, there is a fundamental asymmetry between the shrinking exposure of the “real” US economy to global developments versus the growing global role of the US dollar. Dollar appreciation leads to a decline in global economic activity, which in turn benefits, in relative terms, the dollar itself, reinforcing the initial appreciation and its effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. See also Degaspari et al, (2023) who focuses on the global transmission mechanism of U.S. monetary policy shock

  2. The recovery, combined with a high exchange rate, tends to increase imports and augments the trade deficit. Moreover, a high trade deficit combined with a high exchange rate moderates inflation. The U.S. enjoys the best of all possible worlds: strong economic growth, low inflation and a budget deficit financed with an influx of foreign goods and foreign capital. Soros (1984): I shall call this benign circle the “ Imperial Circle.”

  3. In their analysis, they study the impact of dollar strength on the shipments of exporters that have financing needs building on the fact that dollar-denominated credit is an important share of credit-related activity according to data from SWIFT.

  4. To capture this link they look at the ratio of world trade over GDP as a proxy of Global Value Chain activity versus the dollar index (see Bruno and Shin (2012)).

  5. This structural factor is related to the direction of private capital flows toward the U.S. economy reflecting the massive global asset shortage that is more pronounced in Asia. The asset shortage theme is also a by-product of the policy choices from an official sector point of view. Benigno et al. (2020) note the build-up of foreign exchange reserves by emerging countries and in particular East-Asian economies. In the period starting from 1980 to 2022, the average reserves to GDP ratio for East Asian economies rose from 14 percent to 52 percent. This large scale in foreign reserve accumulation is directed mainly toward U.S. dollar assets. Indeed, as documented in Bertaut et al. (2021), dollar assets are still about 60 percent of globally disclosed official foreign reserves. The global saving glut (Bernanke 2020) is the expression of these structural forces coming from policy choices and economic factors leading to structural demand for US assets as a supporting element in determining relative dollar strength.

  6. Note though that in this paper we abstract from the financial side dimension of the Imperial Dollar.

  7. The cost of adjusting Home bond holdings by Foreign households, taking the following functional form: \(\phi _{H,t}^* = exp \left( -\nu _H^*\frac{B_{Ht}^*}{S_{Ft}^H P_{C,t}^* Y_t^* } \right)\), is introduced for ensuring the stationarity of the model (see, Schmitt-Grohe and Uribe (2003) for details).

  8. Our model’s assumption on working capital loans can be micro-founded as in Akinci and Queralto (2023) proposing a full-fledged general equilibrium macroeconomic model that has a tight link between the evolution of risk premium faced by EMs and the depreciation of their exchange rates in face of unexpected U.S. monetary tightening.

  9. When \(i=T\), \(P^i_{t}\) refers to the domestic production price of the tradable good \(P_{Ht}\) for the Home case. Similarly, \(P_{Ft}^*\) in Foreign and \(P_{Wt}^{**}\) in World tradable sector.

  10. Appendix B contains a complete description of the closed-form equilibrium conditions of the model.

References

  • Akinci, Ozge, and Albert Queralto. 2023. Exchange rate dynamics and monetary spillovers with imperfect financial markets. The Review of Financial Studies 10: 309–355.

    Google Scholar 

  • Akinci, Ozge, Gianluca Benigno, and Serra Pelin. 2022. Global macroeconomic DSGE model. Mimeo: Federal Reserve Bank of New York.

    Google Scholar 

  • Akinci, Ozge, Gianluca Benigno, Julian di Giovanni, Jan J.J. Groen, Adam Noble, and Serra Pelin. 2021. Globalization and inflation dynamics: Macro perspective. Mimeo: Federal Reserve Bank of New York.

    Google Scholar 

  • Antràs, Pol. 2005. Incomplete contracts and the product cycle. American Economic Review 95(4): 1054–1073.

    Article  Google Scholar 

  • Benigno, Gianluca, Luca Fornaro, and Martin Wolf. 2020. The global financial resource curse. CEPR DP 14441.

  • Benigno, Gianluca, and Pierpaolo Benigno. 2003. Price stability in open economies. The Review of Economic Studies 70(4): 743–764.

    Article  MathSciNet  Google Scholar 

  • Benigno, Gianluca, Julian di Giovanni, Jan J.J. Groen, and Adam Noble. 2022. The GSCPI: A new barometer of global supply chain pressures. Technical report 1017, Federal Reserve Bank of New York Staff Report.

  • Bernanke, Ben. 2020. The global saving glut and the U.S. current account deficit. Paper presented at Sandridge Lecture, Virginia Association of Economists, Richmond, VA.

  • Bertaut, Carol, Bastian von Beschwitz, and Stephanie Curcuru. 2021. The international role of the U.S. dollar. FEDS Notes 2021(2998).

  • Boz, Emine, Camila Casas, Georgios Georgiadis, Gita Gopinath, Helena Le Mezo, Arnaud Mehl, and Tra Nguyen. 2020. Patterns in invoicing currency in Global Trade. IMF working paper, WP (20).

  • Bruno, V. and H.S. Shin. 2012. Capital flows and the risk-taking channel of monetary policy. Paper presented at the 11th BIS annual conference, Vol. 22, 23.

  • Bruno, Valentina, and Hyun Song Shin. 2015. Capital flows and the risk-taking channel of monetary policy. Journal of Monetary Economics 71(C): 119–132.

    Article  Google Scholar 

  • Bruno, Valentina, and Hyun Song Shin. 2023. Dollar and exports. The Review of Financial Studies 36(8): 2963–2996.

    Article  Google Scholar 

  • Calvo, Guillermo A. 1983. Staggered prices in a utility-maximizing framework. Journal of Monetary Economics 12(3): 383–398.

    Article  Google Scholar 

  • Carney, Mark. 2019. The growing challenges for monetary policy in the current international monetary and financial system. Paper presented in symposium sponsored by the Federal Reserve Bank of Kansas City, Jackson Hole, WY.

  • Corsetti, Giancarlo, and Paolo Pesenti. 2001. Welfare and macroeconomic interdependence. The Quarterly Journal of Economics 116(2): 421–445.

    Article  Google Scholar 

  • Davies, Sally, and Christopher Kent. 2020. US dollar funding: an international perspective. Technical report 65, BIS Committee on the Global Financial System.

  • Degaspari, Riccardo, Seokki Simon Hong, and Giovanni Ricco. 2023. The global transmission of U.S. monetary policy. (unpublished manuscript).

  • Egorov, Konstantin, and Dmitry Mukhin. 2023. Optimal policy under dollar pricing. American Economic Review 113(7): 1783–1824.

    Article  Google Scholar 

  • Erceg, Christopher, Christopher Gust, and David López-Salido. 2010. The transmission of domestic shocks in open economies. International dimensions of monetary policy. University of Chicago Press, 03.

  • Goldberg, Linda S., and Cedric Tille. 2008. Vehicle currency use in international trade. Journal of International Economics 76(2): 177–192.

    Article  Google Scholar 

  • Gopinath, Gita. 2015. The international price system. NBER working paper (21646).

  • Gopinath, Gita. 2016. The international price system. Paper presented in Jackson hole symposium proceedings.

  • Gopinath, Gita, Emine Boz, Camila Casas, Federico J. Díez, Pierre-Olivier. Gourinchas, and Mikkel Plagborg-Møller. 2020. Dominant currency paradigm. American Economic Review 110(3): 677–719.

    Article  Google Scholar 

  • Gourinchas, Pierre-Olivier. 2021. The dollar hegemon? Evidence and implications for policymakers. In The Asian monetary policy forum insights for central banking, chapter 7, 264–300. World Scientific Publishing Co. Pte. Ltd.

  • Gourinchas, Pierre-Olivier, Hélène Rey, and Maxime Sauzet. 2019. The international monetary and financial system. Annual Review of Economics, Vol. 11:859-893.

  • Ilzetzki, Ethan, Carmen M. Reinhart, and Kenneth S. Rogoff. 2019. Exchange arrangements entering the 21st century: Which anchor will hold? Quarterly Journal of Economics 134(2): 599–646.

    Article  Google Scholar 

  • Justiniano, Alejandro, Giorgio E. Primiceri, and Andrea Tambalotti. 2010. Investment shocks and business cycles. Journal of Monetary Economics 57(2): 132–145.

    Article  Google Scholar 

  • Kehoe, Timothy J., Kim J. Ruhl, and Joseph B. Steinberg. 2018. Global imbalances and structural change in the United States. Journal of Political Economy 126(2): 761–796.

    Article  Google Scholar 

  • Miranda-Agrippino, Silvia, and Helene Rey. 2020. U.S. monetary policy and the global financial cycle. Review of Economic Studies 87(6): 2754–2776.

    Article  MathSciNet  Google Scholar 

  • Miranda-Agrippino, Silvia, Tsvetelina Nenova, and Helene Rey. 2020. Global footprints of monetary policy. Discussion papers 2004, Centre for Macroeconomics (CFM).

  • Neumeyer, Pablo A., and Fabrizio Perri. 2005. Business cycles in emerging economies: The role of interest rates. Journal of Monetary Economics 52(2): 345–380.

    Article  Google Scholar 

  • Obstfeld, Maurice, and Haonan Zhou. 2022. The global dollar cycle. Presented at the Brookings papers on economic activity conference. Technical report, Brookings Institution.

  • Obstfeld, Maurice, and Kenneth Rogoff. 1995. Exchange rate dynamics Redux. Journal of Political Economy 103(3): 624–660.

    Article  Google Scholar 

  • Rey, Helene. 2015. Dilemma not trilemma: The global financial cycle and monetary policy independence. Technical report, National Bureau of Economic Research.

  • Rey, Helene. 2020. International monetary system and global financial cycles. Technical report Paolo Baffi Lecture Banca d’Italia.

  • Schmitt-Grohe, Stephanie, and Martin Uribe. 2003. Closing small open economy models. Journal of International Economics 61(1): 163–185.

    Article  Google Scholar 

  • Schmitt-Grohe, Stephanie, and Martin Uribe. 2016. Downward nominal wage rigidity, currency pegs, and involuntary unemployment. Journal of Political Economy 124(5): 1466–1514.

    Article  Google Scholar 

  • Soros, George. 1984. The danger of Reagan’s “Imperial Circle”. Financial Times, May 23.

  • Turek, Jon. 2020. Imperial Circle part 2: The long US asset/short global growth feedback loop.

Download references

Acknowledgements

The authors thank Ethan Nourbash and William Cross-Bermingham for excellent research assistance. Special thanks to our discussants Ryan Chahrour and Helene Rey, and participants at the IMF 23rd Jacques Polak Annual Research Conference and the CEPR symposium 2023 for very helpful suggestions. The views expressed in this paper are those of the author and do not necessarily reflect the position of the Federal Reserve Bank of New York, the Board of Governors of the Federal Reserve or the Federal Reserve System.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluca Benigno.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

Trade Parameter Values

See Table 6.

Table 6 Openness parameter descriptions and values

Full Set of Equilibrium Conditions

Home country equations:

$$\begin{aligned} C_t^{\frac{-1}{\sigma }}= & {} \beta {\mathbb {E}}_{t} \left[ C_{t+1}^{\frac{-1}{ \sigma }} \frac{R_t^{n}}{\pi ^{C}_{t+1}} \right] \end{aligned}$$
(B.1)
$$\begin{aligned} w_t= & {} \chi _o L_t^\chi C_t^{\frac{1}{\sigma }} \end{aligned}$$
(B.2)
$$\begin{aligned} C_{Ht}= & {} \nu _H^H \left( p_{HT,t} \right) ^{-\rho _c} C_t^T \end{aligned}$$
(B.3)
$$\begin{aligned} C_{Ft}= & {} \nu _F^H \left( \frac{p_{Ft}}{p_{Tt}} \right) ^{-\rho _c} C_t^T \end{aligned}$$
(B.4)
$$\begin{aligned} C_{Wt}= & {} \nu _W^H \left( {\mathcal {T}}_H^W p_{HT,t} \right) ^{-\rho _c} C_t^T \end{aligned}$$
(B.5)
$$\begin{aligned} C_{t}^T= & {} \omega _s \left( p_{T,t} \right) ^{-\rho _s} C_t \end{aligned}$$
(B.6)
$$\begin{aligned} C_{t}^N= & {} (1-\omega _s) \left( p_{N,t} \right) ^{-\rho _s} C_t \end{aligned}$$
(B.7)
$$\begin{aligned} M^T_{Nt}= & {} {\nu _{pN}^H} \left( \frac{p_{N}p_{HM,t} }{p_{T,t}p_{HT,t}} \right) ^{-\rho _m} M^T_t \end{aligned}$$
(B.8)
$$\begin{aligned} M^T_{Ht}= & {} {\nu _{pH}^H} \left( p_{HM,t}\right) ^{-\rho _m} M^T_t \end{aligned}$$
(B.9)
$$\begin{aligned} M^T_{Ft}= & {} {\nu _{pF}^H} \left( \frac{p_{Ft}}{p_{Tt}} \frac{p_{HM,t}}{p_{HT,t}}\right) ^{-\rho _m} M^T_t \end{aligned}$$
(B.10)
$$\begin{aligned} M^T_{Wt}= & {} {\nu _{pW}^H} \left( {\mathcal {T}}_H^W p_{HM,t} \right) ^{-\rho _m} M^T_t\end{aligned}$$
(B.11)
$$\begin{aligned} M^N_{Nt}= & {} {\nu _{pN}^N} \left( p_{NM,t} \right) ^{-\rho _m} M^N_t \end{aligned}$$
(B.12)
$$\begin{aligned} M^N_{Ht}= & {} {\nu _{pH}^N} \left( \frac{p_{T,t}p_{HT,t}}{p_{N,t}}p_{NM,t}\right) ^{-\rho _m} M^N_t \end{aligned}$$
(B.13)
$$\begin{aligned} M^N_{Ft}= & {} {\nu _{pF}^N} \left( \frac{p_{Ft}}{p_{Nt}}p_{NM,t} \right) ^{-\rho _m}M^N_t \end{aligned}$$
(B.14)
$$\begin{aligned} M^N_{Wt}= & {} {\nu _{pW}^N} \left( \frac{p_{T,t}p_{HT,t}}{p_{N,t}}{\mathcal {T}}_{H,t}^W p_{NM,t} \right) ^{-\rho _m} M^N_t \end{aligned}$$
(B.15)
$$\begin{aligned} p_{HT,t}= & {} \left[ \frac{1-\nu _F^H (p_{F,t}/p_{T,t})^{1-\rho _c}}{\nu _H^H+\nu _W^H ( {\mathcal {T}}_H^W )^{1-\rho _c}} \right] ^{\frac{1}{1-\rho _c}} \end{aligned}$$
(B.16)
$$\begin{aligned} p_{N,t}= & {} \left[ \frac{1-\omega _s (p_T)^{1-\rho _s}}{1-\omega _s}\right] ^{\frac{1}{1-\rho _s}} \end{aligned}$$
(B.17)
$$\begin{aligned} {p_{HM,t}}= & {} \left[ \nu _{pN}^H \left( \frac{p_{N} }{p_{T,t}p_{HT,t}} \right) ^{1-\rho _m}+ \nu _{pH}^H + \nu _{pF}^H\right. \nonumber \\{} & {} \left. \left( \frac{p_{Ft}}{p_{Tt} p_{HT,t}} \right) ^{1-\rho _m} + \nu _{pW}^H ({\mathcal {T}}_H^W)^{1-\rho _m}\right] ^{-\frac{1}{1-\rho _m}} \end{aligned}$$
(B.18)
$$\begin{aligned} p_{NM,t}= & {} \left[ \nu _{pN}^N +\nu _{pH}^N \left( \frac{p_{T,t}p_{HT,t}}{ p_{N,t}} \right) ^{1-\rho _m} + \nu _{pF}^N\left( \frac{p_{Ft}}{p_{Nt}} \right) ^{1-\rho _m}\right. \nonumber \\{} & {} \left. + \nu _{pW}^N\left( \frac{p_{T,t}p_{HT,t}}{p_{N,t}}{\mathcal {T}}_{H,t}^W \right) ^{1-\rho _m} \right] ^{-\frac{1}{1-\rho _m}} \end{aligned}$$
(B.19)
$$\begin{aligned} Y^T_t= & {} \overline{K^T}^\alpha (Z_t^T L_t^T)^{\gamma _p} (M^T_t)^{1-\alpha -\gamma _p} \end{aligned}$$
(B.20)
$$\begin{aligned} w_t= & {} \frac{\gamma _p}{\alpha }\frac{\overline{K^T}}{L_t^T}r_{K,t}^T \end{aligned}$$
(B.21)
$$\begin{aligned} p_{HT,t}p_{T,t}/p_{HM,t}= & {} \frac{1-\alpha -\gamma _p}{\alpha }\frac{K^T}{M^T_t}r_{K,t}^T \end{aligned}$$
(B.22)
$$\begin{aligned} mc_t^T= & {} \left( \frac{w_t/Z_t^T}{\gamma _p} \right) ^{\gamma _p} \left( \frac{r_{K,t}^T}{\alpha } \right) ^\alpha \left( \frac{p_{HT,t}p_{T,t}/p_{HM,t}}{ 1-\alpha -\gamma _p}\right) ^{1-\alpha -\gamma _p} \end{aligned}$$
(B.23)
$$\begin{aligned} {\pi _{t}}^{-\frac{1}{\theta _p}}= & {} (1-\xi _p) ({\pi _{t}}^o)^{-\frac{1}{ \theta _p}} + \xi _p(\pi _{t-1})^{-\frac{\iota _p}{\theta _p}} \end{aligned}$$
(B.24)
$$\begin{aligned} {\pi _{t}}^o= & {} (1+\theta _p) \frac{x_{1T,t}}{x_{2T,t}} \pi _t \end{aligned}$$
(B.25)
$$\begin{aligned} x_{1T,t}= & {} \omega _s^{\frac{1}{\rho _s}} C_t^{\frac{1}{\rho _s}-\frac{1}{\sigma }} C_{T,t}^{-\frac{1}{\rho _s}} mc_t^T Y_{t}^T \nonumber \\{} & {} + \beta \xi _p {\pi _t}^{-\iota _p\frac{1+\theta _p}{\theta _p}} {\mathbb {E}}_t \left\{ x_{1T,t+1} {\pi _{t+1}}^{\frac{1+\theta _p}{\theta _p}} \right\} \end{aligned}$$
(B.26)
$$\begin{aligned} x_{2T,t}= & {} \omega _s^{\frac{1}{\rho _s}} C_t^{\frac{1}{\rho _s}-\frac{1}{\sigma }} C_{T,t}^{-\frac{1}{\rho _s}} p_{HT,t} p_{T,t} Y_t^T \nonumber \\{} & {} + \beta \xi _p {\pi _t}^{\iota _p \left( 1-\frac{1+\theta _p}{\theta _p}\right) } {\mathbb {E}}_t\left\{ x_{2T,t+1} {\pi _{t+1}}^{\frac{1+\theta _p}{\theta _p} - 1}\right\} \end{aligned}$$
(B.27)
$$\begin{aligned} Y^N_t= & {} \overline{K^N}^\alpha (Z_t^N L_t^N)^{\gamma _p}(M^N_t)^{1-\alpha -\gamma _p} \end{aligned}$$
(B.28)
$$\begin{aligned} w_t= & {} \frac{\gamma _p}{\alpha }\frac{\overline{K^N}}{L_t^N}r_{K,t}^N \end{aligned}$$
(B.29)
$$\begin{aligned} p_{N,t}/p_{NM,t}= & {} \frac{1-\alpha -\gamma _p}{\alpha }\frac{K^N}{M^N_t} r_{K,t}^N \end{aligned}$$
(B.30)
$$\begin{aligned} mc^N_t= & {} \left( \frac{w_t/Z_t^N}{\gamma _p} \right) ^{\gamma _p} \left( \frac{r_{K,t}^N}{\alpha } \right) ^\alpha \left( \frac{p_{N,t}/p_{NM,t}}{1-\alpha -\gamma _p}\right) ^{1-\alpha -\gamma _p} \end{aligned}$$
(B.31)
$$\begin{aligned} {\pi _{t}^N}^{-\frac{1}{\theta _p}}= & {} (1-\xi _p) ({\pi _{t}^N}^o)^{-\frac{1}{\theta _p}} + \xi _p(\pi _{t-1}^N)^{-\frac{\iota _p}{\theta _p}} \end{aligned}$$
(B.32)
$$\begin{aligned} {\pi _{t}^N}^o= & {} (1+\theta _p) \frac{x_{1N,t}}{x_{2N,t}} \pi _t^N \end{aligned}$$
(B.33)
$$\begin{aligned} x_{1N,t}= & {} (1-\omega _s)^{\frac{1}{\rho _s}} C_t^{\frac{1}{\rho _s}-\frac{1}{\sigma }} C_{N,t}^{-\frac{1}{\rho _s}} mc_t^N Y_{t}^N \nonumber \\{} & {} + \beta \xi _p {\pi _t^N}^{-\iota _p \frac{1+\theta _p}{\theta _p}} {\mathbb {E}}_t \left\{ x_{1N,t+1} {\pi _{t+1^N}}^{\frac{1+\theta _p}{\theta _p}} \right\} \end{aligned}$$
(B.34)
$$\begin{aligned} x_{2N,t}= & {} (1-\omega _s)^{\frac{1}{\rho _s}} C_t^{\frac{1}{\rho _s}-\frac{1}{\sigma }} C_{N,t}^{-\frac{1}{\rho _s}} p_{N,t} Y_t^N \nonumber \\{} & {} + \beta \xi _p {\pi _t^N}^{\iota _p \left( 1-\frac{1+\theta _p}{\theta _p}\right) } {\mathbb {E}}_t \left\{ x_{2N,t+1} {\pi _{t+1}^N}^{\frac{1+\theta _p}{\theta _p} - 1} \right\} \end{aligned}$$
(B.35)
$$\begin{aligned} \pi ^C_t= & {} \pi _t \frac{p_{HT,t-1}p_{T,t-1}}{p_{HT,t}p_{T,t}} \end{aligned}$$
(B.36)
$$\begin{aligned} \pi ^C_t= & {} \pi _t^N\frac{p_{Nt-1}}{p_{N,t}} \end{aligned}$$
(B.37)
$$\begin{aligned} \pi ^C_t= & {} \pi _{Ft} \frac{p_{Ft-1}}{p_{Ft}} \end{aligned}$$
(B.38)
$$\begin{aligned} \pi ^C_t= & {} \pi ^W_{Ft} \frac{p^W_{Ft-1}}{p^W_{Ft}} \end{aligned}$$
(B.39)
$$\begin{aligned} Y_{t}^T= & {} C_{Ht} + M^T_{Ht}+M^N_{Ht}+ \frac{n_F}{n_H}\left( C_{Ht}^* + {M^T_{Ht}}^*+{M^N_{Ht}}^*\right) \nonumber \\{} & {} + \frac{n_W}{n_H}\left( C_{Ht}^{**} + {M^T_{Ht}}^{**}+{M^N_{Ht}}^{**}\right) \end{aligned}$$
(B.40)
$$\begin{aligned} L_t= & {} L^T_t + L^N_t \end{aligned}$$
(B.41)
$$\begin{aligned} Y^N_t= & {} C^N_t + M^N_{Nt} + M^T_{Nt} \end{aligned}$$
(B.42)
$$\begin{aligned} R_t^n= & {} \beta ^{-1} {\pi _t}^{\gamma _{\pi }} \end{aligned}$$
(B.43)

where \(p_{HT,t} \equiv \frac{P_{H,t} }{P^T_{t}}\), \(p_{HM,t} \equiv \frac{ P_{H,t} }{P^T_{M,t}}\), \(p_{NM,t} \equiv \frac{P^N_{t} }{P^N_{M,t}}\), \(p_{N,t} \equiv \frac{P^N_t}{P_{C,t}}\), \(p_{Ft} \equiv \frac{P_{Ft}}{P_{Ct}}\) , \(p^W_{Ft} \equiv \frac{P^W_{Ft}}{P_{Ct}}\), \(\pi ^C_{t} \equiv \frac{P_{C,t} }{P_{C,t-1}}\), \(\pi _{t} \equiv \frac{P_{H,t}}{P_{H,t-1}}\), \(\pi ^N_{t} \equiv \frac{P^N_{t}}{P^N_{t-1}}\), \(\pi _{Ft} \equiv \frac{P_{Ft}}{P_{Ft-1}}\), and \(\pi ^W_{Ft} \equiv \frac{P^W_{Ft}}{P^W_{Ft-1}}\).

Foreign country equations:

$$\begin{aligned} {C_t^*}^{\frac{-1}{\sigma }}= & {} \beta ^* {\mathbb {E}}_{t} \left[ {C^*_{t+1}}^{\frac{-1}{\sigma }} \frac{{R_t^*}^{n}}{{\pi ^*}^{C}_{t+1}} \right] \end{aligned}$$
(B.44)
$$\begin{aligned} w^*_t= & {} \chi _o {L_t^*}^\chi {C_t^*}^{\frac{1}{\sigma }} \end{aligned}$$
(B.45)
$$\begin{aligned} C_{Ht}^*= & {} \nu _H^F \left( {\mathcal {T}}_F^H p_{FT,t}^* \right) ^{-\rho _c} {C_t^T}^* \end{aligned}$$
(B.46)
$$\begin{aligned} C_{Ft}^*= & {} \nu _F^F \left( p_{FT,t}^*\right) ^{-\rho _c} {C_t^T}^* \end{aligned}$$
(B.47)
$$\begin{aligned} C_{Wt}^*= & {} \nu _W^F \left( {\mathcal {T}}_F^Wp_{FT,t}^{*} \right) ^{-\rho _c} {C_t^T}^* \end{aligned}$$
(B.48)
$$\begin{aligned} {C_{t}^T}^*= & {} \omega _s^* \left( p_{T,t}^* \right) ^{-\rho _s} C_t^* \end{aligned}$$
(B.49)
$$\begin{aligned} {C_{t}^N}^*= & {} (1-\omega _s^*) \left( p_{N,t}^* \right) ^{-\rho _s} C_t^* \end{aligned}$$
(B.50)
$$\begin{aligned} {M^T_N}^*= & {} {\nu _{p{N}}^F}\left( \frac{p_{N}^*p_{FM,t}^* }{p_{T,t}^*p_{FT,t}^*} \right) ^{-\rho _m} {M^T}^* \end{aligned}$$
(B.51)
$$\begin{aligned} {M^T_H}^*= & {} {\nu _{pH}^F}\left( {\mathcal {T}}_F^H p_{FM,t}^* \right) ^{-\rho _m}{M^T}^* \end{aligned}$$
(B.52)
$$\begin{aligned} {M^T_F}^*= & {} {\nu _{pF}^F} \left( p_{FM,t}^* \right) ^{-\rho _m} {M^T}^* \end{aligned}$$
(B.53)
$$\begin{aligned} {M^T_W}^*= & {} {\nu _{pW}^F} \left( {\mathcal {T}}_F^Wp_{FM,t}^* \right) ^{-\rho _m} {M^T}^* \end{aligned}$$
(B.54)
$$\begin{aligned} {M^N_N}^*= & {} {\nu _{p{N}}^{N^*}}\left( p_{NM,t}^* \right) ^{-\rho _m} {M^N}^* \end{aligned}$$
(B.55)
$$\begin{aligned} {M^N_H}^*= & {} {\nu _{p{H}}^{N^*}}\left( \frac{p_{T,t}^*p_{FT,t}^*}{p_{N,t}^*}{\mathcal {T}}_F^H p_{NM,t}^*\right) ^{-\rho _m} {M^N}^* \end{aligned}$$
(B.56)
$$\begin{aligned} {M^N_F}^*= & {} {\nu _{p{F}}^{N^*}}\left( \frac{p_{T,t}^*p_{FT,t}^*}{p_{N,t}^*}p_{NM,t}^* \right) ^{-\rho _m} {M^N}^* \end{aligned}$$
(B.57)
$$\begin{aligned} {M^N_W}^*= & {} {\nu _{p{W}}^{N^*}}\left( \frac{p_{T,t}^*p_{FT,t}^*}{p_{N,t}^*}{\mathcal {T}}_F^W p_{NM,t}^*\right) ^{-\rho _m} {M^N}^* \end{aligned}$$
(B.58)
$$\begin{aligned} {p_{FT,t}^*}= & {} \left[ \nu _H^F \left( {\mathcal {T}}_F^H \right) ^{1-\rho _c} +\nu _F^F +\nu _W^F\left( {\mathcal {T}}_F^W \right) ^{1-\rho _c} \right] ^{-\frac{1}{1-\rho _c}} \end{aligned}$$
(B.59)
$$\begin{aligned} p_{N,t}^*= & {} \left[ \frac{1-\omega _s^* (p_T^*)^{1-\rho _s}}{1-\omega _s^*}\right] ^{\frac{1}{1-\rho _s}} \end{aligned}$$
(B.60)
$$\begin{aligned} {p_{FM,t}^*}= & {} \left[ \nu _{pN}^F \left( \frac{p_{N}^* }{p_{T,t}^*p_{FT,t}^*}\right) ^{1-\rho _m} \right. \nonumber \\{} & {} \left. +\nu _{pH}^F \left( {\mathcal {T}}_F^H \right) ^{1-\rho _m} +\nu _{pF}^F +\nu _{pW}^F\left( {\mathcal {T}}_F^W \right) ^{1-\rho _m} \right] ^{-\frac{1}{1-\rho _m}} \end{aligned}$$
(B.61)
$$\begin{aligned} p_{NM,t}^*= & {} \left[ \nu _{p{N}}^{N^*} + \nu _{pH}^{N^*} \left( \frac{p_{T,t}^*p_{FT,t}^*}{p_{N,t}^*} {\mathcal {T}}_F^H \right) ^{1-\rho _m} +\nu _{pF}^{N^*}\left( \frac{p_{T,t}^*p_{FT,t}^*}{p_{N,t}^*} \right) \right. \nonumber \\{} & {} \left. +\nu _{pW}^{N^*}\left( \frac{p_{T,t}^*p_{FT,t}^*}{p_{N,t}^*} {\mathcal {T}}_F^W\right) ^{1-\rho _m} \right] ^{-\frac{1}{1-\rho _m}} \end{aligned}$$
(B.62)
$$\begin{aligned} {Y^T}^*= & {} \overline{{K^T}^*}^\alpha ({Z_t^T}^* {L_t^T}^*)^{\gamma _p} ({M^T}^*)^{1-\alpha -\gamma _p} \end{aligned}$$
(B.63)
$$\begin{aligned} w^*= & {} \frac{\gamma _p}{\alpha } \frac{{{\overline{K}}^T}^*}{{L^T_t}^*}\frac{{r_{K,t}^T}^* }{1+(R^n_{risk,ft}-1) \theta _w} \end{aligned}$$
(B.64)
$$\begin{aligned} p_{FT,t}^*p_{T,t}^*/p_{FM,t}^*= & {} \frac{1-\alpha -\gamma _p}{\alpha }\frac{{{\overline{K}}^T}^*}{{M_t^T}^*} \frac{{r_{K,t}^T}^* }{1+(R^n_{risk,ft}-1)\theta _w} \end{aligned}$$
(B.65)
$$\begin{aligned} {mc^T_t}^*= & {} \left( \frac{w_t^*/{Z_t^T}^*[1+(R^n_{risk,ft}-1)\theta _w]}{\gamma _p} \right) ^{\gamma _p} \left( \frac{{r_{K,t}^T}^*}{\alpha }\right) ^\alpha \nonumber \\{} & {} \left( \frac{p_{FT,t}^*p_{T,t}^*/p_{FM,t}^*[1+(R^n_{risk,ft}-1)\theta _w]}{1-\alpha -\gamma _p}\right) ^{1-\alpha -\gamma _p} \end{aligned}$$
(B.66)
$$\begin{aligned} {\pi _{t}^*}^{-\frac{1}{\theta _p}}= & {} (1-\xi _p) ({\pi _{t}^*}^o)^{-\frac{1}{\theta _p}} + \xi _p(\pi _{t-1}^*)^{-\iota _p \frac{1}{\theta _p}} \end{aligned}$$
(B.67)
$$\begin{aligned} {\pi _{t}^*}^o= & {} (1+\theta _p) \frac{x_{1T,t}^*}{x_{2T,t}^*} \pi _t^* \end{aligned}$$
(B.68)
$$\begin{aligned} x_{1T,t}^*= & {} {\omega _s^*}^{\frac{1}{\rho _s}} {C_t^*}^{\frac{1}{\rho _s}-\frac{1}{\sigma }} {C_{T,t}^*}^{-\frac{1}{\rho _s}} {mc_t^T}^* {Y_{Dt}^T}^* \nonumber \\{} & {} +\beta ^* \xi _p {\pi _t^*}^{-\iota _p\frac{1+\theta _p}{\theta _p}} {\mathbb {E}}_t\left\{ {(\pi _{t+1}^*)}^{\frac{1+\theta _p}{\theta _p}} x_{1T,t+1}^* \right\} \end{aligned}$$
(B.69)
$$\begin{aligned} x_{2T,t}^*= & {} {\omega _s^*}^{\frac{1}{\rho _s}} {C_t^*}^{\frac{1}{\rho _s}-\frac{1}{\sigma }} {C_{T,t}^*}^{-\frac{1}{\rho _s}} p_{FT,t}^* p_{T,t}^* {Y_{Dt}^T}^* \nonumber \\{} & {} + \beta ^* \xi _p {\pi _t^*}^{\iota _p \left( 1-\frac{1+\theta _p}{\theta _p} \right) }{\mathbb {E}}_t \left\{ {(\pi _{t+1}^*)}^{\frac{1+\theta _p}{\theta _p} - 1} x_{2T,t+1}^* \right\} \end{aligned}$$
(B.70)
$$\begin{aligned} {Y^T_D}^*= & {} C_F^* + {M_F^T}^* + {M_F^N}^* \end{aligned}$$
(B.71)
$$\begin{aligned} {\ \pi _{Ft} }^{-\frac{1}{\theta _p}}= & {} (1-\xi _p) {\pi _{Ft}^{o}}^{-\frac{1}{\theta _p}} + \xi _p (\pi _{Ft-1})^{-\iota _p \frac{1}{\theta _p}} \end{aligned}$$
(B.72)
$$\begin{aligned} \pi _{Ft}^{o}= & {} (1+\theta _p) \frac{z_{1t}}{z_{2t}} \pi _{Ft} \end{aligned}$$
(B.73)
$$\begin{aligned} z_{1t}= & {} {\omega _s^*}^{\frac{1}{\rho _s}} {C_t^*}^{\frac{1}{\rho _s}-\frac{1}{\sigma }} {C_{T,t}^*}^{-\frac{1}{\rho _s}} N_t {mc^T}^*_t \nonumber \\{} & {} + \beta ^* \xi _p(\pi _{Ft})^{-\iota _p \frac{1+\theta _p}{\theta _p}}{\mathbb {E}}_t \left\{ (\pi _{Ft+1})^{\frac{1+\theta _p}{\theta _p}}z_{1t+1} \right\} \end{aligned}$$
(B.74)
$$\begin{aligned} z_{2t}= & {} {\omega _s^*}^{\frac{1}{\rho _s}} {C_t^*}^{\frac{1}{\rho _s}-\frac{1}{\sigma }} {C_{T,t}^*}^{-\frac{1}{\rho _s}} N_t \frac{p_{Ft}}{{\mathcal {Q}}^H_{Ft}} \nonumber \\{} & {} + \beta ^* \xi _p (\pi _{Ft})^{\iota _p \left( 1-\frac{1+\theta _p}{\theta _p}\right) }{\mathbb {E}}_t \left\{ (\pi _{Ft+1})^{\frac{1+\theta _p}{\theta _p}-1} z_{2t+1} \right\} \end{aligned}$$
(B.75)
$$\begin{aligned} N_t= & {} C_{Ft}+M_{Ft}^T + M_{Ft}^N \end{aligned}$$
(B.76)
$$\begin{aligned} {\ \pi ^W_{Ft} }^{-\frac{1}{\theta _p}}= & {} (1-\xi _p) {\pi _{Ft}^{Wo}}^{-\frac{1}{\theta _p}} + \xi _p (\pi ^W_{Ft-1})^{-\iota _p \frac{1}{\theta _p}} \end{aligned}$$
(B.77)
$$\begin{aligned} \pi _{Ft}^{Wo}= & {} (1+\theta _p) \frac{z^W_{1t}}{z^W_{2t}} \pi ^W_{Ft} \end{aligned}$$
(B.78)
$$\begin{aligned} z^W_{1t}= & {} {\omega _s^*}^{\frac{1}{\rho _s}} {C_t^*}^{\frac{1}{\rho _s}-\frac{1}{\sigma }} {C_{T,t}^*}^{-\frac{1}{\rho _s}} N^W_t {mc^T}^*_t \nonumber \\{} & {} + \beta ^* \xi _p(\pi ^W_{Ft})^{-\iota _p \frac{1+\theta _p}{\theta _p}}{\mathbb {E}}_t \left\{ (\pi ^W_{Ft+1})^{\frac{1+\theta _p}{\theta _p}}z^W_{1t+1} \right\} \end{aligned}$$
(B.79)
$$\begin{aligned} z^W_{2t}= & {} {\omega _s^*}^{\frac{1}{\rho _s}} {C_t^*}^{\frac{1}{\rho _s}-\frac{1}{\sigma }} {C_{T,t}^*}^{-\frac{1}{\rho _s}} N^W_t \frac{p^W_{Ft}}{{\mathcal {Q}}^H_{Ft}} \nonumber \\{} & {} + \beta ^* \xi _p (\pi ^W_{Ft})^{\iota _p \left( 1-\frac{1+\theta _p}{\theta _p}\right) }{\mathbb {E}}_t \left\{ (\pi ^W_{Ft+1})^{\frac{1+\theta _p}{\theta _p}-1} z^W_{2t+1} \right\} \end{aligned}$$
(B.80)
$$\begin{aligned} N_t^W= & {} C_{Ft}^{**}+{M_{Ft}^T}^{**} + {M_{Ft}^N}^{**} \end{aligned}$$
(B.81)
$$\begin{aligned} {Y^N}^*= & {} \overline{{K^N}^*}^\alpha (Z_t^* {L_t^N}^*)^{\gamma _p}({M^N}^*)^{1-\alpha -\gamma _p} \end{aligned}$$
(B.82)
$$\begin{aligned} w^*= & {} \frac{\gamma _p}{\alpha } \frac{{{\overline{K}}^N}^*}{{L^N_t}^*}\frac{{r_{K,t}^N}^* }{1+(R^n_{risk,ft}-1) \theta _w} \end{aligned}$$
(B.83)
$$\begin{aligned} p_{N,t}^*/p_{NM,t}^*= & {} \frac{1-\alpha -\gamma _p}{\alpha }\frac{{{\overline{K}}^N}^*}{{M_t^N}^*} \frac{{r_{K,t}^N}^* }{1+(R^n_{risk,ft}-1) \theta _w} \end{aligned}$$
(B.84)
$$\begin{aligned} {mc^N_t}^*= & {} \left( \frac{w_t^*/{Z_t^N}^*[1+(R^n_{risk,ft}-1)\theta _w]}{\gamma _p} \right) ^{\gamma _p} \left( \frac{{r_{K,t}^N}^*}{\alpha }\right) ^\alpha \nonumber \\{} & {} \left( \frac{p_{N,t}^*/p_{NM,t}^*[1+(R^n_{risk,ft}-1)\theta _w]}{1-\alpha -\gamma _p}\right) ^{1-\alpha -\gamma _p} \end{aligned}$$
(B.85)
$$\begin{aligned} {{\pi _{t}^N}^*}^{-\frac{1}{\theta _p}}= & {} (1-\xi _p) ({{\pi _{t}^N}^*}^o)^{-\frac{1}{\theta _p}} + \xi _p({\pi _{t-1}^N}^*)^{-\frac{\iota _p}{\theta _p}} \end{aligned}$$
(B.86)
$$\begin{aligned} {{\pi _{t}^N}^*}^o= & {} (1+\theta _p) \frac{x_{1N,t}^*}{x_{2N,t}^*} {\pi _t^N}^*\end{aligned}$$
(B.87)
$$\begin{aligned} x_{1N,t}^*= & {} (1-\omega _s^*)^{\frac{1}{\rho _s}} {C_t^*}^{\frac{1}{\rho _s}-\frac{1}{\sigma }} {C_{N,t}^*}^{-\frac{1}{\rho _s}} {mc_t^N}^* {Y_{t}^N }^*\nonumber \\{} & {} +\beta ^* \xi _p {{\pi _t^N}^*}^{-\iota _p \frac{1+\theta _p}{\theta _p}} {\mathbb {E}}_t \left\{ x_{1N,t+1}^* {{\pi _{t+1^N}}^*}^{\frac{1+\theta _p}{\theta _p}}\right\} \end{aligned}$$
(B.88)
$$\begin{aligned} x_{2N,t}^*= & {} (1-\omega _s^*)^{\frac{1}{\rho _s}} {C_t^*}^{\frac{1}{\rho _s}-\frac{1}{\sigma }} {C_{N,t}^*}^{-\frac{1}{\rho _s}} p_{N,t}^* {Y_t^N}^* \nonumber \\{} & {} +\beta ^* \xi _p {{\pi _t^N}^*}^{\iota _p \left( 1-\frac{1+\theta _p}{\theta _p}\right) } {\mathbb {E}}_t \left\{ x_{2N,t+1}^* {{\pi _{t+1}^N}^*}^{\frac{1+\theta _p}{\theta _p} - 1}\right\} \end{aligned}$$
(B.89)
$$\begin{aligned} {\pi _t^*}^C= & {} \pi _t^* \frac{p_{FT,t-1}^*p_{T,t-1}^*}{p_{FT,t}^*p_{T,t}^*}\end{aligned}$$
(B.90)
$$\begin{aligned} {\pi _t^*}^C= & {} {\pi _t^N}^*\frac{p_{Nt-1}^*}{p_{N,t}^*} \end{aligned}$$
(B.91)
$$\begin{aligned} {Y^T}^*= & {} C_{Ft}^* + {M^T_{Ft}}^*+ {M^N_{Ft}}^* +\frac{n_H}{n_F} \left( C_{Ft}+M_{Ft}^T + M_{Ft}^N \right) \nonumber \\{} & {} + \frac{n_W}{n_F} \left( C_{Ft}^{**}+{M_{Ft}^T}^{**} + {M_{Ft}^N}^{**}\right) \end{aligned}$$
(B.92)
$$\begin{aligned} L^*= & {} {L^T}^* + {L^N}^* \end{aligned}$$
(B.93)
$$\begin{aligned} {Y^N}^*= & {} {C^N}^*+ {M^N_N}^* + {M^T_N}^* \end{aligned}$$
(B.94)
$$\begin{aligned} {R_t^*}^n= & {} {\beta ^*}^{-1} {{\pi ^C_t}^*}^{\gamma _{\pi }} \end{aligned}$$
(B.95)

where \(p_{FT,t}^* \equiv \frac{P_{F,t}^* }{{P^T_{t}}^*}\), \(p_{FM,t}^* \equiv \frac{{P_{F,t}}^* }{{P^T_{M,t}}^*}\), \(p_{NM,t}^* \equiv \frac{{P^N_{t}}^* }{{ P^N_{M,t}}^*}\), \(p^*_{N,t} \equiv \frac{{P^N_t}^*}{P_{C,t}^*}\), \({\pi ^C_{t}} ^* \equiv \frac{P_{C,t}^*}{P_{C,t-1}^*}\), \(\pi ^*_{t} \equiv \frac{P_{F,t}^*}{ P_{F,t-1}^*}\), and \({\pi ^N_{t}}^* \equiv \frac{{P^N_{t}}^*}{{P^N_{t-1}}^*}\).

World country equations:

$$\begin{aligned} {C_t^{**}}^{\frac{-1}{\sigma }}= & {} \beta ^{**} {\mathbb {E}}_{t} \left[ {C^{**}_{t+1}}^{\frac{-1}{\sigma }} \frac{{R_t^{**}}^{n}}{{\pi ^{**}}^{C}_{t+1}}\right] \end{aligned}$$
(B.96)
$$\begin{aligned} w^{**}_t= & {} \chi _o {L_t^{**}}^\chi {C_t^{**}}^{\frac{1}{\sigma }} \end{aligned}$$
(B.97)
$$\begin{aligned} C_{Ht}^{**}= & {} \nu _H^W \left( \frac{1}{{\mathcal {T}}_H^W} p_{WT,t}^{**}\right) ^{-\rho _c} {C_t^T}^{**} \end{aligned}$$
(B.98)
$$\begin{aligned} C_{Ft}^{**}= & {} \nu _F^W \left( \frac{p_F^W}{p_T{**}}\frac{1}{{\mathcal {Q}}_W^H}\right) ^{-\rho _c} {C_t^T}^{**} \end{aligned}$$
(B.99)
$$\begin{aligned} C_{Wt}^{**}= & {} \nu _W^W \left( p_{WT,t}^{**} \right) ^{-\rho _c} {C_t^T}^{**}\end{aligned}$$
(B.100)
$$\begin{aligned} {C_{t}^T}^{**}= & {} \omega _s^{**} \left( p_{T,t}^{**} \right) ^{-\rho _s}C_t^{**} \end{aligned}$$
(B.101)
$$\begin{aligned} {C_{t}^N}^{**}= & {} (1-\omega _s^{**}) \left( p_{N,t}^{**} \right) ^{-\rho _s}C_t^{**} \end{aligned}$$
(B.102)
$$\begin{aligned} {M^T_N}^{**}= & {} {\nu _{p{N}}^W}\left( \frac{p_{N}^{**}p_{WM,t}^{**} }{p_{T,t}^{**}p_{WT,t}^{**}}\right) ^{-\rho _m} {M^T}^{**} \end{aligned}$$
(B.103)
$$\begin{aligned} {M^T_H}^{**}= & {} {\nu _{pH}^W}\left( \frac{1}{{\mathcal {T}}_H^W} p_{WM,t}^{**}\right) ^{-\rho _m} {M^T}^{**} \end{aligned}$$
(B.104)
$$\begin{aligned} {M^T_F}^{**}= & {} {\nu _{pF}^W} \left( \frac{p_{Ft}^W}{{\mathcal {Q}}_{Wt}^H}\frac{p_{WM}^{**}}{p_{WT,t}^{**}p_{T,t}^{**}} \right) ^{-\rho _m} {M^T}^{**} \end{aligned}$$
(B.105)
$$\begin{aligned} {M^T_W}^{**}= & {} {\nu _{pW}^W} \left( p_{WM,t}^{**} \right) ^{-\rho _m} {M^T}^{**} \end{aligned}$$
(B.106)
$$\begin{aligned} {M^N_N}^{**}= & {} {\nu _{p{N}}^{N^{**}}}\left( p_{NM,t}^{**} \right) ^{-\rho _m} {M^N}^{**} \end{aligned}$$
(B.107)
$$\begin{aligned} {M^N_H}^{**}= & {} {\nu _{p{H}}^{N^{**}}}\left( \frac{p_{T,t}^{**}p_{WT,t}^{**}}{p_{N,t}^{**}}\frac{p_{NM,t}^{**}}{{\mathcal {T}}_{H,t}^W} \right) ^{-\rho _m} {M^N}^{**} \end{aligned}$$
(B.108)
$$\begin{aligned} {M^N_F}^{**}= & {} {\nu _{p{F}}^{N^{**}}}\left( \frac{p_{Ft}^W}{{\mathcal {Q}}_{Wt}^H}\frac{p_{NM,t}^{**}}{p_{N,t}^{**}} \right) ^{-\rho _m} {M^N}^{**} \end{aligned}$$
(B.109)
$$\begin{aligned} {M^N_W}^{**}= & {} {\nu _{p{W}}^{N^{**}}}\left( \frac{p_{T,t}^{**}p_{WT,t}^{**}}{p_{N,t}^{**}} p_{NM,t}^{**} \right) ^{-\rho _m} {M^N}^{**} \end{aligned}$$
(B.110)
$$\begin{aligned} p_{WT,t}^{**}= & {} \left[ \frac{1-\nu _F^W {\left( \frac{p_F^W}{p_T{**}}\frac{1}{{\mathcal {Q}}_W^H}\right) }^{1-\rho _c}}{\nu _H^W {\left( \frac{1}{{\mathcal {T}}_H^W} \right) }^{1-\rho _c} +\nu _W^W} \right] ^{\frac{1}{1-\rho _c}} \end{aligned}$$
(B.111)
$$\begin{aligned} p_{N,t}^{**}= & {} \left[ \frac{1-\omega _s^{**} (p_T^{**})^{1-\rho _s}}{1-\omega _s^{**}}\right] ^{\frac{1}{1-\rho _s}} \end{aligned}$$
(B.112)
$$\begin{aligned} {p_{WM,t}^{**}}= & {} \left[ \nu _{pN}^W \left( \frac{p_{N}^{**} }{p_{T,t}^{**}p_{WT,t}^{**}}\right) ^{1-\rho _m} +\nu _{pH}^W \left( \frac{1}{{\mathcal {T}}_{Ht}^W}\right) ^{1-\rho _m} \right. \nonumber \\{} & {} \left. + \nu _{pF}^W \left( \frac{p_{Ft}^W}{{\mathcal {Q}}_{Wt}^H p_{WT,t}^{**}p_{T,t}^{**}}\right) ^{1-\rho _m}+\nu _{pW}^W\right] ^{-\frac{1}{1-\rho _m}} \end{aligned}$$
(B.113)
$$\begin{aligned} p_{NM,t}^{**}= & {} \left[ \nu _{p{N}}^{N^{**}} + \nu _{pH}^{N^{**}} \left( \frac{p_{T,t}^{**}p_{WT,t}^{**}}{p_{N,t}^{**}{\mathcal {T}}_{H,t}^W}\right) ^{1-\rho _m} \right. \nonumber \\{} & {} \left. + \nu _{pF}^{N^{**}}\left( \frac{p_{Ft}^W}{{\mathcal {Q}}_{Wt}^H p_{N,t}^{**}} \right) ^{1-\rho _m} + \nu _{pW}^{N^{**}}\left( \frac{p_{T,t}^{**}p_{WT,t}^{**}}{p_{N,t}^{**}} \right) ^{1-\rho _m} \right] ^{-\frac{1}{1-\rho _m}} \end{aligned}$$
(B.114)
$$\begin{aligned} {Y^T}^{**}= & {} \overline{{K^T}^{**}}^\alpha ({Z_t^T}^{**} {L_t^T}^{**})^{\gamma _p} ({M^T}^{**})^{1-\alpha -\gamma _p} \end{aligned}$$
(B.115)
$$\begin{aligned} w^{**}= & {} \frac{\gamma _p}{\alpha } \frac{{{\overline{K}}^T}^{**}}{{L^T_t}^{**}}\frac{{r_{K,t}^T}^{**} }{1+(R^n_{t}-1) \theta _w} \end{aligned}$$
(B.116)
$$\begin{aligned} p_{WT,t}^{**}p_{T,t}^{**}/p_{WM,t}^{**}= & {} \frac{1-\alpha -\gamma _p}{\alpha }\frac{{{\overline{K}}^T}^{**}}{{M_t^T}^{**}} \frac{{r_{K,t}^T}^{**} }{1+(R^n_{t}-1) \theta _w} \end{aligned}$$
(B.117)
$$\begin{aligned} {mc^T_t}^{**}= & {} \left( \frac{w_t^{**}/{Z_t^T}^{**}[1+(R^n_{t}-1)\theta _w]}{\gamma _p} \right) ^{\gamma _p} \left( \frac{{r_{K,t}^T}^{**}}{\alpha } \right) ^\alpha \nonumber \\{} & {} \left( \frac{p_{WT,t}^{**}p_{T,t}^{**}/p_{WM,t}^{**}[1+(R^n_{t}-1)\theta _w]}{1-\alpha -\gamma _p}\right) ^{1-\alpha -\gamma _p} \end{aligned}$$
(B.118)
$$\begin{aligned} {\pi _{t}^{**}}^{-\frac{1}{\theta _p}}= & {} (1-\xi _p) ({\pi _{t}^*}^o)^{-\frac{1}{\theta _p}} + \xi _p(\pi _{t-1}^*)^{-\frac{\iota _p}{\theta _p}} \end{aligned}$$
(B.119)
$$\begin{aligned} {\pi _{t}^{**}}^o= & {} (1+\theta _p) \frac{x_{1T,t}^{**}}{x_{2T,t}^{**}}\pi _t^{**} \end{aligned}$$
(B.120)
$$\begin{aligned} x_{1T,t}^{**}= & {} {\omega _s^{**}}^{\frac{1}{\rho _s}} {C_t^{**}}^{\frac{1}{\rho _s}-\frac{1}{\sigma }} {C_{T,t}^{**}}^{-\frac{1}{\rho _s}} {mc_t^T}^{**} {Y_{t}^T}^{**} \nonumber \\{} & {} + \beta ^{**} \xi _p {\pi _t^{**}}^{-\iota _p \frac{1+\theta _p}{\theta _p}} {\mathbb {E}}_t \left\{ x_{1T,t+1}^{**} {\pi _{t+1}^{**}}^{\frac{1+\theta _p}{\theta _p}}\right\} \end{aligned}$$
(B.121)
$$\begin{aligned} x_{2T,t}^{**}= & {} {\omega _s^{**}}^{\frac{1}{\rho _s}} {C_t^{**}}^{\frac{1}{\rho _s}-\frac{1}{\sigma }} {C_{T,t}^{**}}^{-\frac{1}{\rho _s}} p_{WT,t}^{**}p_{T,t}^{**} {Y_t^T}^{**} \nonumber \\{} & {} + \beta ^* \xi _p {\pi _t^{**}}^{\iota _p \left( 1-\frac{1+\theta _p}{\theta _p}\right) } {\mathbb {E}}_t \left\{ x_{2T,t+1}^{**} {\pi _{t+1}^{**}}^{\frac{1+\theta _p}{\theta _p} - 1}\right\} \end{aligned}$$
(B.122)
$$\begin{aligned} {Y^N}^{**}= & {} \overline{{K^N}^{**}}^\alpha (Z_t^{**} {L_t^N}^{**})^{\gamma _p}({M^N}^{**})^{1-\alpha -\gamma _p} \end{aligned}$$
(B.123)
$$\begin{aligned} w^{**}= & {} \frac{\gamma _p}{\alpha } \frac{{{\overline{K}}^N}^{**}}{{L^N_t}^{**}}\frac{{r_{K,t}^N}^{**} }{1+(R^n_{risk,wt}-1) \theta _w} \end{aligned}$$
(B.124)
$$\begin{aligned} p_{N,t}^{**}/p_{NM,t}^{**}= & {} \frac{1-\alpha -\gamma _p}{\alpha }\frac{{{\overline{K}}^N}^{**}}{{M_t^N}^{**}} \frac{{r_{K,t}^N}^{**} }{1+(R^n_{risk,wt}-1) \theta _w} \end{aligned}$$
(B.125)
$$\begin{aligned} {mc^N_t}^{**}= & {} \left( \frac{w_t^{**}/{Z_t^N}^{**}[1+(R^n_{risk,wt}-1)\theta _w]}{\gamma _p} \right) ^{\gamma _p} \left( \frac{{r_{K,t}^N}^{**}}{\alpha } \right) ^\alpha \nonumber \\{} & {} \left( \frac{p_{N,t}^{**}/p_{NM,t}^{**}[1+(R^n_{risk,wt}-1)\theta _w]}{1-\alpha -\gamma _p}\right) ^{1-\alpha -\gamma _p} \end{aligned}$$
(B.126)
$$\begin{aligned} {{\pi _{t}^N}^{**}}^{-\frac{1}{\theta _p}}= & {} (1-\xi _p) ({{\pi _{t}^N}^{**}}^o)^{-\frac{1}{\theta _p}} + \xi _p({\pi _{t-1}^N}^{**})^{-\frac{\iota _p}{\theta _p}} \end{aligned}$$
(B.127)
$$\begin{aligned} {{\pi _{t}^N}^{**}}^o= & {} (1+\theta _p) \frac{x_{1N,t}^{**}}{x_{2N,t}^{**}} {\pi _t^N}^{**} \end{aligned}$$
(B.128)
$$\begin{aligned} x_{1N,t}^{**}= & {} (1-\omega _s^{**})^{\frac{1}{\rho _s}} {C_t^{**}}^{\frac{1}{\rho _s}-\frac{1}{\sigma }} {C_{N,t}^{**}}^{-\frac{1}{\rho _s}} {mc_t^N}^{**} {Y_{t}^N }^{**}\nonumber \\{} & {} + \beta ^{**} \xi _p {{\pi _t^N}^{**}}^{-\iota _p \frac{1+\theta _p}{\theta _p}} {\mathbb {E}}_t \left\{ x_{1N,t+1}^{**} {{\pi _{t+1^N}}^{**}}^{\frac{1+\theta _p}{\theta _p}} \right\} \end{aligned}$$
(B.129)
$$\begin{aligned} x_{2N,t}^{**}= & {} (1-\omega _s^{**})^{\frac{1}{\rho _s}} {C_t^{**}}^{\frac{1}{\rho _s}-\frac{1}{\sigma }} {C_{N,t}^{**}}^{-\frac{1}{\rho _s}} p_{N,t}^{**} {Y_t^N}^{**} \nonumber \\{} & {} + \beta ^{**} \xi _p {{\pi _t^N}^{**}}^{\iota _p \left( 1-\frac{1+\theta _p}{\theta _p}\right) } {\mathbb {E}}_t \left\{ x_{2N,t+1}^{**} {{\pi _{t+1}^N}^{**}}^{\frac{1+\theta _p}{\theta _p} - 1} \right\} \end{aligned}$$
(B.130)
$$\begin{aligned} {\pi _t^{**}}^C= & {} \pi _t^{**} \frac{p_{WT,t-1}^{**}p_{T,t-1}^{**}}{p_{WT,t}^{**}p_{T,t}^{**}} \end{aligned}$$
(B.131)
$$\begin{aligned} {\pi _t^{**}}^C= & {} {\pi _t^N}^{**}\frac{p_{Nt-1}^{**}}{p_{N,t}^{**}} \end{aligned}$$
(B.132)
$$\begin{aligned} {Y_{t}^T}^{**}= & {} C_{Wt}^{**} + {M^T_{Wt}}^{**} + {M^N_{Wt}}^{**} + \frac{n_H}{n_W}\left( C_{Wt} + M^T_{Wt} + M^N_{Wt} \right) \nonumber \\{} & {} + \frac{n_F}{n_W}\left( C_{Wt}^{*} + {M^T_{Wt}}^{*}+ {M^N_{Wt}}^{*}\right) \end{aligned}$$
(B.133)
$$\begin{aligned} L^{**}= & {} {L^T}^{**} + {L^N}^{**} \end{aligned}$$
(B.134)
$$\begin{aligned} {Y^N}^{**}= & {} {C^N}^{**} + {M^N_N}^{**} + {M^T_N}^{**} \end{aligned}$$
(B.135)
$$\begin{aligned} {R_t^{**}}^n= & {} {\beta ^{**}}^{-1} {{\pi ^C_t}^{**}}^{\gamma _{\pi }} \end{aligned}$$
(B.136)

where \(p_{WT,t}^{**} \equiv \frac{P_{W,t}^{**} }{{P^T_{t}}^{**}}\), \({ p^T_{WM,t}}^{**} \equiv \frac{{P_{W,t}}^{**} }{{P^T_{M,t}}^{**}}\), \({ p^T_{NM,t}}^{**} \equiv \frac{{P^N_{t}}^{**} }{{P^N_{M,t}}^{**}}\), \(p^{**}_{N,t} \equiv \frac{{P^N_t}^{**}}{P_{C,t}^{**}}\), \({\pi ^C_{t}}^{**} \equiv \frac{P_{C,t}^{**}}{P_{C,t-1}^{**}}\), \(\pi ^{**}_{t} \equiv \frac{ P_{W,t}^{**}}{P_{W,t-1}^{**}}\), and \({\pi ^N_{t}}^{**} \equiv \frac{{P^N_{t}} ^{**}}{{P^N_{t-1}}^{**}}\).

Equations Common to all countries :

$$\begin{aligned} {\mathcal {Q}}_{Ft}^H= & {} \frac{1}{{\mathcal {T}}_{Ft}^H} \frac{p_{HT,t}p_{T,t}}{p_{FT,t}^* p_{T,t}^*}\end{aligned}$$
(B.137)
$$\begin{aligned} {\mathcal {Q}}_{Wt}^H= & {} {\mathcal {T}}_{Ht}^W \frac{p_{HT,t}p_{T,t}}{p_{WT,t}^{**}p_{T,t}^{**}} \end{aligned}$$
(B.138)
$$\begin{aligned} {\mathcal {T}}_{Ft}^W= & {} \frac{{\mathcal {Q}}_{Wt}^H}{{\mathcal {Q}}_{Ft}^H}\frac{p_{WT,t}^{**} p_{T,t}^{**}}{p_{FT,t}^* p_{T,t}^*} \end{aligned}$$
(B.139)
$$\begin{aligned} \Lambda _{t,t+1}= & {} \Lambda _{t,t+1}^* \frac{{\mathcal {Q}}_{Ft}^H}{{\mathbb {E}}_t {\mathcal {Q}}_{Ft+1}^H} \phi _{Ht}^* \end{aligned}$$
(B.140)
$$\begin{aligned} \Lambda _{t,t+1}= & {} \Lambda _{t,t+1}^{**} \frac{{\mathcal {Q}}_{Wt}^H}{{\mathbb {E}}_t {\mathcal {Q}}_{Wt+1}^H} \phi _{Ht} ^{**} \end{aligned}$$
(B.141)
$$\begin{aligned}&p_{FT,t}^* p_{T,t}^* \left[ {\mathcal {T}}_{Ft}^H (C_{Ht}^*+{M^T_{Ht}}^* +{M^N_{Ht}} ^*) + {\mathcal {T}}_{Ft}^W (C_{Wt}^*+{M^T_{Wt}}^*+{M^N_{Wt}}^*)\right] \nonumber \\&\qquad -\frac{1}{ {\mathcal {Q}}_{Ft}^H} \left( \frac{n_H}{n_F} p_{Ft} N_t + \frac{n_W}{n_F}p^W_{Ft} N^W_t\right) \nonumber \\&\quad =\frac{1}{{\mathcal {Q}}_{Ft}^H} \left( \frac{B_{t-1}^*}{\pi _t^C} - \frac{ B_{t}^* }{R^n_{t} \phi _{Ht}^* }\right) - (R^n_{risk,ft}-1) \theta _w \left( \frac{ p_{FT,t}^*p_{T,t}^*}{p_{FM,t}^*} {M_t^T}^*+\frac{p_{N,t}^*}{p_{NM,t}^*} { M_t^N}^*+w_t^* L_t^* \right) \end{aligned}$$
(B.142)
$$\begin{aligned}&p_{WT,t}^{**} p_{T,t}^{**} \left[ \frac{1}{{\mathcal {T}}_{Ht}^W} (C_{Ht}^{**} + {M^T_{Ht} }^{**}+ {M^N_{Ht}}^{**}) - \frac{n_H}{n_W}( C_{Wt} + M^T_{Wt}+ M^N_{Wt})\right. \nonumber \\&\qquad \left. -\frac{n_F}{n_W} (C_{Wt}^{*} + {M^T_{Wt}}^{*}+ {M^N_{Wt}}^{*}) \right] + \frac{ p^W_{F,t}}{{\mathcal {Q}}_{Wt}^H } N^W_t \nonumber \\&\quad = \frac{1}{{\mathcal {Q}}_{Wt}^H} \left( \frac{B_{t-1}^{**}}{\pi _t^C} - \frac{ B_{t}^{**}}{R^n_{t} \phi _{Ht}^{**} }\right) - (R^n_{t}-1) \theta _w \left( \frac{p_{WT,t}^{**}p_{T,t}^{**}}{p_{WM,t}^{**}} {M_t^T}^{**}+ \frac{p_{N,t}^{**}}{p_{NM,t}^{**}} {M_t^N}^{**}+w_t^{**} L_t^{**} \right) \end{aligned}$$
(B.143)

where \(\Lambda _{t,t+1} \equiv \beta \left( \frac{{\mathbb {E}}_t C_{t+1}}{C_t} \right) ^{- \frac{1}{\sigma }}\), \(\Lambda _{t,t+1}^* \equiv \beta ^*\left( \frac{{\mathbb {E}}_t C_{t+1}^*}{ C_t^*} \right) ^{-\frac{1}{\sigma }}\), \(\Lambda _{t,t+1}^{**} \equiv \beta ^{**}\left( \frac{{\mathbb {E}}_t C_{t+1}^{**}}{C_t^{**}} \right) ^{-\frac{1}{\sigma }}\), \(\phi _{H,t}^* = exp \left( -\nu _H^*\frac{B_{t}^*}{{\mathcal {Q}}_{Ft}^H {Y_t}^* } \right)\), \(\phi _{H,t}^{**} = exp \left( -\nu _H^{**}\frac{B_{t}^{**}}{\mathcal { Q}_{Wt}^H {Y_t}^{**} } \right)\), \(R^n_{risk,ft} = R^n_t + \left( \frac{S_{F,t-1}^H}{S_{Ft}^H}-1\right)\), and \({\mathcal {Q}}_{Ft}^H \equiv \frac{ S_{Ft}^H P_{C,t}^* }{P_{C,t}}\), \({\mathcal {Q}}_{Wt}^H \equiv \frac{S_{Wt}^H P_{C,t}^{**} }{P_{C,t}}\), \({\mathcal {T}}_{Ft}^H \equiv \frac{P_{Ht}^*}{P_{Ft}^* }\), \({\mathcal {T}}_F^W \equiv \frac{P_W^*}{P_F^*}\), \({\mathcal {T}}_{Wt}^H \equiv \frac{P_{Wt}}{P_{Ht}}\equiv \frac{P_{Wt}^{**}}{P_{Ht}^{**}}\), \(B_t^* = \frac{ B_{Ht}^*}{P_{C,t}}\), and \(B_t^{**} = \frac{B_{Ht}^{**}}{P_{C,t}}\).

List of Variables (143): \(C_t\), \(C_t^*\), \(C_t^{**}\), \(C_t^T\), \({ C_t^T}^*\), \({C_t^T}^{**}\), \(C_t^N\), \({C_t^N}^*\), \({C_t^N}^{**}\), \(C_{H,t}\), \(C_{H,t}^*\), \(C_{H,t}^{**}\), \(C_{F,t}\), \(C_{F,t}^*\), \(C_{F,t}^{**}\), \(C_{W,t}\) , \(C_{W,t}^*\), \(C_{W,t}^{**}\), \(M^T_t\), \({M^T_t}^*\), \({M^T_t}^{**}\), \(M^N_t\) , \({M^N_t}^*\), \({M^N_t}^{**}\), \({M^T_{N,t}}\), \({M^T_{N,t}}^*\), \({M^T_{N,t}} ^{**}\), \({M^T_{H,t}}\), \({M^T_{H,t}}^*\), \({M^T_{H,t}}^{**}\), \({M^T_{F,t}}\), \({ M^T_{F,t}}^*\), \({M^T_{F,t}}^{**}\), \({M^T_{W,t}}\), \({M^T_{W,t}}^*\), \({ M^T_{W,t}}^{**}\), \({M^N_{N,t}}\), \({M^N_{N,t}}^*\), \({M^N_{N,t}}^{**}\), \({ M^N_{H,t}}\), \({M^N_{H,t}}^*\), \({M^N_{H,t}}^{**}\), \({M^N_{F,t}}\), \({M^N_{F,t}} ^*\), \({M^N_{F,t}}^{**}\), \({M^N_{W,t}}\), \({M^N_{W,t}}^*\), \({M^N_{W,t}}^{**}\), \(Y_t^T\), \({Y_t^T}^*\), \({Y_t^T}^{**}\), \(Y_t^N\), \({Y_t^N}^*\), \({Y_t^N}^{**}\), \({Y^T_{D,t}}^*\), \(N_t\), \(N_t^W\), \(L_t\), \(L_t^*\), \(L_t^{**}\), \(L_t^T\), \({L_t^T} ^*\), \({L_t^T}^{**}\), \(L_t^N\), \({L_t^N}^*\), \({L_t^N}^{**}\), \(w_t\), \(w_t^*\), \(w_t^{**}\), \(r_{K,t}^T\), \({r_{K,t}^T}^*\), \({r_{K,t}^T}^{**}\), \(r_{K,t}^N\), \({ r_{K,t}^N}^*\), \({r_{K,t}^N}^{**}\), \(mc_t^T\), \({mc_t^T}^*\), \({mc_t^T}^{**}\), \(mc_t^N\), \({mc_t^N}^*\), \({mc_t^N}^{**}\), \(p_{HT,t}\), \(p_{FT,t}^*\), \(p_{WT,t}^{**}\), \(p_{HM,t}\), \(p_{FM,t}^*\), \(p_{WM,t}^{**}\), \(p_{NM,t}\), \(p_{NM,t}^*\), \(p_{NM,t}^{**}\), \(p_{T,t}\), \(p_{T,t}^*\), \(p_{T,t}^{**}\), \(p_{N,t}\), \(p_{N,t}^*\), \(p_{N,t}^{**}\), \(p_{F,t}\), \(p^W_{F,t}\), \(R^n_t\), \({ R^n_t}^*\), \({R^n_t}^{**}\), \(\pi ^C_t\), \({\pi ^C_t}^*\), \({\pi ^C_t}^{**}\), \(\pi _t\), \({\pi _t}^*\), \({\pi _t}^{**}\), \(\pi _t^N\), \({\pi _t^N}^*\), \({\pi _t^N} ^{**}\), \(\pi _{F,t}\), \(\pi ^W_{F,t}\) \(\pi ^0_t\), \({\pi ^0_t}^*\), \({\pi ^0_t}^{**}\) , \({\pi ^N}^0_t\), \({{\pi ^N}^0_t}^*\), \({{\pi ^N}^0_t}^{**}\), \(\pi _{F,t}^0\), \(\pi _{F,t}^{0W}\), \(x_{1T,t}\), \(x_{1T,t}^*\), \(x_{1T,t}^{**}\), \(x_{1N,t}\), \(x_{1N,t}^*\), \(x_{1N,t}^{**}\), \(z_{1,t}\), \(z^W_{1,t}\), \(x_{2T,t}\), \(x_{2T,t}^*\), \(x_{2T,t}^{**}\), \(x_{2N,t}\), \(x_{2N,t}^*\), \(x_{2N,t}^{**}\), \(z_{2,t}\), \(z^W_{2,t}\), \({{\mathcal {T}}_t}_F^H\), \({{\mathcal {T}}_t}_F^W\), \({ {\mathcal {T}}_t}_H^W\), \({\mathcal {Q}}_{Ft}^H\), \({\mathcal {Q}}_{Wt}^H\), \(B_t^*\), \(B_t^{**}\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akinci, O., Benigno, G., Pelin, S. et al. The Dollar’s Imperial Circle. IMF Econ Rev (2024). https://doi.org/10.1057/s41308-023-00235-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1057/s41308-023-00235-6

JEL Classification

Navigation