Skip to main content
Log in

A risk control tool for foreign financial activities – A new derivatives pricing model

  • Original Article
  • Published:
Journal of Asset Management Aims and scope Submit manuscript

Abstract

Investors as well as firms are concerned with not only foreign/domestic stock price risk but also foreign exchange rate risk when making decisions for investing (or financing) overseas. In this paper, a new contingent claim is proposed for the derivatives markets for use in the domestic or foreign derivatives markets. Particularly, we address hedging against stock and exchange rate risk while adjusting for protecting the value of a collateralized stock. We introduce a closed-form solution for a Quanto put option coupled with a reset feature to hedge against downside risk while maintain upside potential from foreign investments. The Quanto options meet the investors’ concerns for exchange rate risk while the reset feature locks in value against downside stock risk. The proposed product is an efficient tool for risk management and aims to support decision making for firms when considering financing and investing in the foreign markets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  • Allayannis, G. and Ofek E. (2001) Exchange rate exposure, hedging, and the use of foreign currency derivatives. Journal of International Money and Finance 20: 273–296.

    Article  Google Scholar 

  • Bartram, S.M., Brown, G.W. and Conrad, J. (2011) The effects of derivatives on firm risk and value. Journal Of Financial and Quantitative Analysis 46: 967–999.

    Article  Google Scholar 

  • Black, F. and Scholes, M. (1973) The pricing of options and corporate liabilities. Journal of Political Economy 81: 637–654.

    Article  Google Scholar 

  • Chang, F.Y., Hsin, C.W. and Shiah-Hou, S. R. (2013) A re-examination of exposure to exchange rate risk: The impact of earnings management and currency derivative usage. Journal of Banking & Finance 37: 3243–3257.

    Article  Google Scholar 

  • Deng, S-J, Johnson, B. and A. Sogomonian (2001) Exotic electricity options and the valuation of electricity generation and transmission assets. Decision Support Systems 30: 383–392.

    Article  Google Scholar 

  • Duffie, D. (1988), Security Markets: Stochastic Models. New York: Academic Press.

    Google Scholar 

  • Gounopoulos, D., Molyneux, P., Staikouras, S. K., Wilson J. O.S., and Zhao G. (2013) Exchange rate risk and the equity performance of financial intermediaries. International Review of Financial Analysis 29: 271–282.

    Article  Google Scholar 

  • Gray, S.F. and Whaley, R.E. (1997) Valuing S&P 500 bear market reset warrants with a periodic reset. Journal of Derivatives 5: 99–106.

    Article  Google Scholar 

  • Gray, S.F., and Whaley, R.E. (1999) Reset put options: Valuation, risk characteristics, and an application. Australian Journal of Management 24: 1–20.

    Article  Google Scholar 

  • Ince, H. and Trafalis, T. B. (2006) A hybrid model for exchange rate prediction. Decision Support Systems 42: 1054–1062.

    Article  Google Scholar 

  • Karatzas, I. and Shreve, S. (1991), Brownian Motion and Stochastic Calculus. 2nd Ed, Springer, New York, pp. 190–196.

    Google Scholar 

  • Mancini, L., Ranaldo, A. and Wrampelmeyer, J. (2013) Liquidity in the foreign exchange market: Measurement, commonality, and risk premiums, The Journal of Finance 68: 1805–1841.

    Article  Google Scholar 

  • Musiela, M., and Rutkowski, M. (1997) Martingale Methods in Financial Modelling, Springer, Berlin.

    Book  Google Scholar 

  • Philippas, D., and Siriopoulos, C. (2013) Putting the “C” into crisis: Contagion, correlations and copulas on EMU bond markets. Journal of International Financial Markets, Institutions and Money 27: 161–176.

    Article  Google Scholar 

  • Reiner, E. (1992) Quanto mechanics. Risk 5(3): 59–63.

    Google Scholar 

  • Sermpinis, G., Dunis, C., Laws, J. and Stasinakis C. (2012) Forecasting and trading the EUR/USD exchange rate with stochastic neural network combination and time-varying leverage. Decision Support Systems 42: 316–329.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Karathanasopoulos.

Appendices

Appendix A

Proof of proposition 1: Equation (5)

In a risk-neutral world, the price of the Type-1 Quanto reset put option is computed as follows:

$$\begin{aligned} RP_{1} \left( {S_{0} ,\;K,\;0} \right) & =\, e^{{ - r_{d} T}} \left\{ {E^{Q} \left[ {\bar{X}\left( {S_{{t_{0} }} - S{}_{T}} \right) \cdot 1_{{\left( {S_{{t_{0} }} > K,\,S_{{t_{0} }} > S_{T} } \right)}} \left| {F_{0} } \right.} \right] + E^{Q} \left[ {\bar{X}\left( {K - S{}_{T}} \right) \cdot 1_{{\left( {S_{{t_{0} }} \le K,\,S_{T} < K} \right)}} \left| {F_{0} } \right.} \right]} \right\} \\ & =\, e^{{ - r_{d} T}} E^{Q} \left[ {\bar{X}\left( {S_{{t_{0} }} - S{}_{T}} \right) \cdot 1_{{\left( {S_{{t_{0} }} > K,\,S_{{t_{0} }} > S_{T} } \right)}} \left| {F_{0} } \right.} \right] + e^{{ - r_{d} T}} E^{Q} \left[ {\bar{X}\left( {K - S{}_{T}} \right) \cdot 1_{{\left( {S_{{t_{0} }} \le K,\,S_{T} < K} \right)}} \left| {F_{0} } \right.} \right] \\ & =\, RP_{11} + RP_{12} \\ \end{aligned}.$$
(A.1)

We compute the first component \(RP_{11}\) of (A.1) and use the law of iterated conditional expectations. Rewrite \(RP_{11}\) as follows:18

$$\begin{aligned} RP_{11} & = e^{{ - r_{d} T}} E^{Q} \left[ {E^{Q} \left[ {\bar{X}\left( {S_{{t_{0} }} - S{}_{T}} \right) \cdot 1_{{\left( {S_{{t_{0} }} > K,\,S_{{t_{0} }} > S_{T} } \right)}} \left| {F_{{t_{0} }} } \right.} \right]\left| {F_{0} } \right.} \right] \\ & = \bar{X}e^{{ - r_{d} T}} \left\{ {E^{Q} \left[ {E^{Q} \left[ {S_{{t_{0} }} \cdot 1_{{\left( {S_{{t_{0} }} > K,\,S_{{t_{0} }} > S_{T} } \right)}} \left| {F_{{t_{0} }} } \right.} \right]\left| {F_{0} } \right.} \right] - E^{Q} \left[ {E^{Q} \left[ {S{}_{T} \cdot 1_{{\left( {S_{{t_{0} }} > K,\,S_{{t_{0} }} > S_{T} } \right)}} \left| {F_{{t_{0} }} } \right.} \right]\left| {F_{0} } \right.} \right]} \right\} \\ \end{aligned}.$$
(A.2)

Using the independence property,19 the first component of (A.2) is computed as follows:20

$$\begin{aligned} E^{Q} \left[ {S_{{t_{0} }} \cdot 1_{{\left( {S_{{t_{0} }} > K} \right)}} E^{Q} \left[ {1_{{\left( {S_{{t_{0} }} > S_{T} } \right)}} \left| {F_{{t_{0} }} } \right.} \right]\left| {F_{0} } \right.} \right] = E^{Q} \left[ {S_{{t_{0} }} \cdot 1_{{\left( {S_{{t_{0} }} > K} \right)}} \left| {F_{0} } \right.} \right]E^{Q} \left[ {1_{{\left( {S_{{t_{0} }} > S_{T} } \right)}} \left| {F_{{t_{0} }} } \right.} \right] \hfill \\ = S_{0} e^{{\left( {r_{f} - \rho \sigma_{S} \sigma_{X} } \right)t_{0} }} E^{{R_{1} }} \left[ {1_{{\left( {S_{{t_{0} }} > K} \right)}} \left| {F_{0} } \right.} \right]E^{Q} \left[ {1_{{\left( {S_{{t_{0} }} > S_{T} } \right)}} \left| {F_{{t_{0} }} } \right.} \right] = S_{0} e^{{\left( {r_{f} - \rho \sigma_{S} \sigma_{X} } \right)t_{0} }} N\left( {d_{1} } \right)N\left( { - b_{2} } \right). \hfill \\ \end{aligned}$$
(A.3)

Similarly, the second component of (A.2) can be computed using change of probability measure based on Girsanov theorem and then we decompose the bivariate cumulative normal probability into the product of two univariate cumulative normal probabilities. This is given below:

$$\begin{aligned} E^{Q} \left[ {E^{Q} \left[ {S{}_{T} \cdot 1_{{\left( {S_{{t_{0} }} > K,\,S_{{t_{0} }} > S_{T} } \right)}} \left| {F_{{t_{0} }} } \right.} \right]\left| {F_{0} } \right.} \right] = E^{Q} \left[ {S{}_{{t_{0} }}e^{{\left( {r_{f} - \rho \sigma_{S} \sigma_{X} } \right)\left( {T - t_{0} } \right)}} 1_{{\left( {S_{{t_{0} }} > K} \right)}} E^{{R_{1} }} \left[ {1_{{\left( {\,S_{{t_{0} }} > S_{T} } \right)}} \left| {F_{{t_{0} }} } \right.} \right]\left| {F_{0} } \right.} \right] \hfill \\ \quad = E^{Q} \left[ {S{}_{{t_{0} }}e^{{\left( {r_{f} - \rho \sigma_{S} \sigma_{X} } \right)\left( {T - t_{0} } \right)}} \cdot 1_{{\left( {S_{{t_{0} }} > K} \right)}} \left| {F_{{t_{0} }} } \right.} \right]E^{{R_{1} }} \left[ {1_{{\left( {\,S_{{t_{0} }} > S_{T} } \right)}} \left| {F_{{t_{0} }} } \right.} \right] \hfill \\ \quad = S{}_{0}e^{{\left( {r_{f} - \rho \sigma_{S} \sigma_{X} } \right)T}} E^{{R_{1} }} \left[ {1_{{\left( {S_{{t_{0} }} > K} \right)}} \left| {F_{{t_{0} }} } \right.} \right]E^{{R_{1} }} \left[ {1_{{\left( {\,S_{{t_{0} }} > S_{T} } \right)}} \left| {F_{{t_{0} }} } \right.} \right] = S{}_{0}e^{{\left( {r_{f} - \rho \sigma_{S} \sigma_{X} } \right)T}} N\left( {d_{1} } \right)N\left( { - b_{1} } \right). \hfill \\ \end{aligned}$$
(A.4)

Using (A.3), (A.4), and (A.2), we get

$$RP_{11}\, =\, \bar{X}e^{{ - r_{d} T}} \left\{ {S_{0} e^{{\left( {r_{f} - \rho \sigma_{S} \sigma_{X} } \right)t_{0} }} N\left( {d_{1} } \right)N\left( { - b_{2} } \right) - S{}_{0}e^{{\left( {r_{f} - \rho \sigma_{S} \sigma_{X} } \right)T}} N\left( {d_{1} } \right)N\left( { - b_{1} } \right)} \right\} .$$
(A.5)

Next, we compute the second component \(RP_{12}\) of (A.1). Decompose it into two terms and use change of probability measure to obtain the following:

$$\begin{aligned} RP_{12} &= e^{{ - r_{d} T}} E^{Q} \left[ {\bar{X}\left( {K - S{}_{T}} \right) \cdot 1_{{\left( {S_{{t_{0} }} \le K,\,S_{T} < K} \right)}} \left| {F_{0} } \right.} \right] \\ \quad \quad &= \bar{X}e^{{ - r_{d} T}} \left\{ {E^{Q} \left[ {K \cdot 1_{{\left( {S_{{t_{0} }} \le K,\,S_{T} < K} \right)}} \left| {F_{0} } \right.} \right] - E^{Q} \left[ {S{}_{T} \cdot 1_{{\left( {S_{{t_{0} }} \le K,\,S_{T} < K} \right)}} \left| {F_{0} } \right.} \right]} \right\} \\ \quad \quad& =\bar{X}e^{{ - r_{d} T}} \left\{ {KE^{Q} \left[ {1_{{\left( {S_{{t_{0} }} \le K,\,S_{T} < K} \right)}} \left| {F_{0} } \right.} \right] - S_{0} e^{{\left( {r_{f} - \rho \sigma_{S} \sigma_{X} } \right)T}} E^{{R_{1} }} \left[ {1_{{\left( {S_{{t_{0} }} \le K,\,S_{T} < K} \right)}} \left| {F_{0} } \right.} \right]} \right\} \\ \quad \quad &= \bar{X}e^{{ - r_{d} T}} \left\{ {KN_{2} \left( { - d_{2} , - \tilde{b}_{2} ,\sqrt {{\raise0.5ex\hbox{$\scriptstyle {t_{0} }$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle T$}}} } \right) - S_{0} e^{{\left( {r_{f} - \rho \sigma_{S} \sigma_{X} } \right)T}} N_{2} \left( { - d_{1} , - \tilde{b}_{1} ,\sqrt {{\raise0.5ex\hbox{$\scriptstyle {t_{0} }$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle T$}}} } \right)} \right\}. \\ \end{aligned}$$
(A.6)

Substituting (A.5) and (A.6) into (A.1), we obtain the pricing model for the Type-1 Quanto reset put option as given below:

$$\begin{aligned} RP_{1} \left( {S_{0} ,K,0} \right) = \bar{X}e^{{ - r_{d}^{T} }} \left\{ {S_{0} e^{{\left( {r_{f} - \rho \sigma_{s} \sigma_{X} } \right)}} N(d_{1} )N( - b_{2} ) - S_{0} e^{{\left( {r_{f} - \rho \sigma_{s} \sigma_{X} } \right)}} N(d_{1} )N( - b_{1} )} \right. \hfill \\ \left. { + \,KN_{2} \left( { - d_{2} , - \tilde{b}_{2} ,\sqrt {\frac{{t_{0} }}{T}} } \right) - S_{0} e^{{\left( {r_{f} - \rho \sigma_{s} \sigma_{X} } \right)}} N_{2} \left( { - d_{2} , - \tilde{b}_{2} ,\sqrt {\frac{{t_{0} }}{T}} } \right)} \right\} \hfill \\ \end{aligned}.$$

\(\quad \square\)

Appendix B

Proof of proposition 2: equation (9)

Based on the payoff structure as given in equation (8), the price of the Type-2 Quanto reset put option is computed as follows:

$$\begin{aligned} RP_{2} \left( {S_{0} ,\;K,\;0} \right) = & e^{{ - r_{d} T}} \left\{ {E^{Q} \left[ {X_{T} \left( {S_{{t_{0} }} - S{}_{T}} \right) \cdot 1_{{\left( {S_{{t_{0} }} > K,\,S_{{t_{0} }} > S_{T} } \right)}} \left| {F_{0} } \right.} \right] + E^{Q} \left[ {X_{T} \left( {K - S{}_{T}} \right) \cdot 1_{{\left( {S_{{t_{0} }} \le K,\,S_{T} < K} \right)}} \left| {F_{0} } \right.} \right]} \right\} \\ = e^{{ - r_{d} T}} E^{Q} \left[ {X_{T} \left( {S_{{t_{0} }} - S{}_{T}} \right) \cdot 1_{{\left( {S_{{t_{0} }} > K,\,S_{{t_{0} }} > S_{T} } \right)}} \left| {F_{0} } \right.} \right] + e^{{ - r_{d} T}} E^{Q} \left[ {X_{T} \left( {K - S{}_{T}} \right) \cdot 1_{{\left( {S_{{t_{0} }} \le K,\,S_{T} < K} \right)}} \left| {F_{0} } \right.} \right] \\ = RP_{21} + RP_{22} \\ \end{aligned}.$$
(B.1)

The first component \(RP_{21}\) of (B.1) is computed using the law of iterated conditional expections as follows:

$$\begin{aligned} RP_{21} &= e^{{ - r_{d} T}} E^{Q} \left[ {E^{Q} \left[ {X_{T} \left( {S_{{t_{0} }} - S{}_{T}} \right) \cdot 1_{{\left( {S_{{t_{0} }} > K,\,S_{{t_{0} }} > S_{T} } \right)}} \left| {F_{{t_{0} }} } \right.} \right]\left| {F_{0} } \right.} \right] \\ &= e^{{ - r_{d} T}} \left\{ {E^{Q} \left[ {E^{Q} \left[ {X_{T} S_{{t_{0} }} \cdot 1_{{\left( {S_{{t_{0} }} > K,\,S_{{t_{0} }} > S_{T} } \right)}} \left| {F_{{t_{0} }} } \right.} \right]\left| {F_{0} } \right.} \right] - E^{Q} \left[ {E^{Q} \left[ {X_{T} S{}_{T} \cdot 1_{{\left( {S_{{t_{0} }} > K,\,S_{{t_{0} }} > S_{T} } \right)}} \left| {F_{{t_{0} }} } \right.} \right]\left| {F_{0} } \right.} \right]} \right\} \\ &= e^{{ - r_{d} T}} \left\{ {E^{Q} \left[ {X_{{t_{0} }} S_{{t_{0} }} E^{Q} \left[ {e^{{\left( {r_{d} - r_{f} - \tfrac{1}{2}\sigma_{X}^{2} } \right)\left( {T - t_{0} } \right) + \sigma_{X} w_{{T - t_{0} }}^{Q} }} \cdot 1_{{\left( {S_{{t_{0} }} > K} \right)}} 1_{{\left( {\,S_{{t_{0} }} > S_{T} } \right)}} \left| {F_{{t_{0} }} } \right.} \right]\left| {F_{0} } \right.} \right]} \right. \\ &\left. { - E^{Q} \left[ {X_{{t_{0} }} S{}_{{t_{0} }}E^{Q} \left[ {e^{{\left[ {r_{d} - \tfrac{1}{2}\left( {\sigma_{S}^{2} + 2\rho \sigma_{S} \sigma_{X} + \sigma_{X}^{2} } \right)} \right]\left( {T - t_{0} } \right) + \sigma_{S} Z_{{T - t_{0} }}^{Q} + \sigma_{X} w_{{T - t_{0} }}^{Q} }} \cdot 1_{{\left( {S_{{t_{0} }} > K} \right)}} 1_{{\left( {\,S_{{t_{0} }} > S_{T} } \right)}} \left| {F_{{t_{0} }} } \right.} \right]\left| {F_{0} } \right.} \right]} \right\} \\ &= e^{{ - r_{d} T}} \left\{ {E^{Q} \left[ {X_{{t_{0} }} S_{{t_{0} }} e^{{\left( {r_{d} - r_{f} } \right)\left( {T - t_{0} } \right)}} 1_{{\left( {S_{{t_{0} }} > K} \right)}} E^{{R_{2} }} \left[ {1_{{\left( {S_{{t_{0} }} > S_{T} } \right)}} \left| {F_{{t_{0} }} } \right.} \right]\left| {F_{0} } \right.} \right]} \right. \\ &\left. { - E^{Q} \left[ {X_{{t_{0} }} S{}_{{t_{0} }}e^{{r_{d} \left( {T - t_{0} } \right)}} 1_{{\left( {S_{{t_{0} }} > K} \right)}} E^{{R_{3} }} \left[ {1_{{\left( {S_{{t_{0} }} > S_{T} } \right)}} \left| {F_{{t_{0} }} } \right.} \right]\left| {F_{0} } \right.} \right]} \right\}. \\ \end{aligned}$$
(B.2)

The above computation employs Girsanov theorem to change Q measure into two probability measures (\(R_{2}\) measure and \(R_{3}\) measure).21 Hence, equation (B.2) is rewritten as follows:22

$$\begin{aligned} &e^{{ - r_{d} T}} \left\{ {E^{Q} \left[ {X_{{t_{0} }} S_{{t_{0} }} e^{{\left( {r_{d} - r_{f} } \right)\left( {T - t_{0} } \right)}} 1_{{\left( {S_{{t_{0} }} > K} \right)}} \left| {F_{0} } \right.} \right]E^{{R_{2} }} \left[ {1_{{\left( {S_{{t_{0} }} > S_{T} } \right)}} \left| {F_{{t_{0} }} } \right.} \right] - E^{Q} \left[ {X_{{t_{0} }} S{}_{{t_{0} }}e^{{r_{d} \left( {T - t_{0} } \right)}} 1_{{\left( {S_{{t_{0} }} > K} \right)}} \left| {F_{0} } \right.} \right]E^{{R_{3} }} \left[ {1_{{\left( {S_{{t_{0} }} > S_{T} } \right)}} \left| {F_{{t_{0} }} } \right.} \right]} \right\} \hfill \\ &= e^{{ - r_{d} T}} \left\{ {X_{0} S_{0} e^{{r_{d} t_{0} }} e^{{\left( {r_{d} - r_{f} } \right)\left( {T - t_{0} } \right)}} E^{{R_{3} }} \left[ {1_{{\left( {S_{{t_{0} }} > K} \right)}} \left| {F_{0} } \right.} \right]E^{{R_{2} }} \left[ {1_{{\left( {S_{{t_{0} }} > S_{T} } \right)}} \left| {F_{{t_{0} }} } \right.} \right]} \right. \hfill \\ & \left. { - X_{0} S{}_{0}e^{{r_{d} t_{0} }} e^{{r_{d} \left( {T - t_{0} } \right)}} E^{{R_{3} }} \left[ {1_{{\left( {S_{{t_{0} }} > K} \right)}} \left| {F_{0} } \right.} \right]E^{{R_{3} }} \left[ {1_{{\left( {S_{{t_{0} }} > S_{T} } \right)}} \left| {F_{{t_{0} }} } \right.} \right]} \right\}, \hfill \\ \end{aligned}$$
(B.3)

where we again use Girsanov theorem to make change of measure. Using (B) in Appendix E and arranging the terms, we obtain \(RP_{21}\):

$$RP_{21} = X_{0} \left\{ {S_{0} e^{{ - r_{f} \left( {T - t_{0} } \right)}} N\left( {d_{3} } \right)N\left( { - b_{4} } \right) - S_{0} N\left( {d_{3} } \right)N\left( { - b_{3} } \right)} \right\}.$$
(B.4)

Next, we compute the second component \(RP_{22}\) and decompose it into two terms. Using Girsanov theorem to make change of measure and (B) in Appendix E, we obtain \(RP_{22}\):

$$\begin{aligned} RP_{22} = & e^{{ - r_{d} T}} E^{Q} \left[ {X_{T} \left( {K - S{}_{T}} \right) \cdot 1_{{\left( {S_{{t_{0} }} \le K,\,S_{T} < K} \right)}} \left| {F_{0} } \right.} \right] \\ = e^{{ - r_{d} T}} \left\{ {KE^{Q} \left[ {X_{T} \cdot 1_{{\left( {S_{{t_{0} }} \le K,\,S_{T} < K} \right)}} \left| {F_{0} } \right.} \right] - E^{Q} \left[ {X_{T} S_{T} \cdot 1_{{\left( {S_{{t_{0} }} \le K,\,S_{T} < K} \right)}} \left| {F_{0} } \right.} \right]} \right\} \\ = e^{{ - r_{d} T}} \left\{ {KX_{0} e^{{\left( {r_{d} - r_{f} } \right)T}} E^{{R_{2} }} \left[ {1_{{\left( {S_{{t_{0} }} \le K,\,S_{T} < K} \right)}} \left| {F_{0} } \right.} \right] - X_{0} S_{0} e^{{r_{d} T}} E^{{R_{3} }} \left[ {1_{{\left( {S_{{t_{0} }} \le K,\,S_{T} < K} \right)}} \left| {F_{0} } \right.} \right]} \right\} \\ = e^{{ - r_{d} T}} X_{0} \left\{ {Ke^{{\left( {r_{d} - r_{f} } \right)T}} N\left( { - d_{4} ,\; - \tilde{b}_{4} ,\;\sqrt {{\raise0.5ex\hbox{$\scriptstyle {t_{0} }$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle T$}}} } \right) - S_{0} e^{{r_{d} T}} N\left( { - d_{3} ,\; - \tilde{b}_{3} ,\;\sqrt {{\raise0.5ex\hbox{$\scriptstyle {t_{0} }$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle T$}}} } \right)} \right\} \\ = X_{0} \left\{ {Ke^{{ - r_{f} T}} N\left( { - d_{4} ,\; - \tilde{b}_{4} ,\;\sqrt {{\raise0.5ex\hbox{$\scriptstyle {t_{0} }$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle T$}}} } \right) - S_{0} N\left( { - d_{3} ,\; - \tilde{b}_{3} ,\;\sqrt {{\raise0.5ex\hbox{$\scriptstyle {t_{0} }$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle T$}}} } \right)} \right\}. \\ \end{aligned}$$
(B.5)

Substituting (B.4) and (B.5) into (B.1) to obtain the pricing model for the Type-2 Quanto reset put option:

$$\begin{aligned} RP_{2} \left( {S_{0} ,\;K,\;0} \right) = & X_{0} \left\{ {S_{0} e^{{ - r_{f} \left( {T - t_{0} } \right)}} N\left( {d_{3} } \right)N\left( { - b_{4} } \right) - S_{0} N\left( {d_{3} } \right)N\left( { - b_{3} } \right)} \right. \\ \left. { +\, Ke^{{ - r_{f} T}} N\left( { - d_{4} ,\; - \tilde{b}_{4} ,\;\sqrt {{\raise0.5ex\hbox{$\scriptstyle {t_{0} }$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle T$}}} } \right) - S_{0} N\left( { - d_{3} ,\; - \tilde{b}_{3} ,\;\sqrt {{\raise0.5ex\hbox{$\scriptstyle {t_{0} }$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle T$}}} } \right)} \right\}. \\ \end{aligned}$$

\(\quad \square\)

Appendix C

Proof of Proposition 3: equation (13)

Based on the payoff structure as given in equation (12), the price of the Type-3 Quanto reset put option is computed below:

$$\begin{aligned} RP_{3} \left( {X_{0} S_{0} ,\;K,\;0} \right) &= e^{{ - r_{d} T}} \left\{ {E^{Q} \left[ {\left( {X_{{t_{0} }} S_{{t_{0} }} - X_{T} S{}_{T}} \right) \cdot 1_{{\left( {X_{{t_{0} }} S_{{t_{0} }} > K,\,X_{{t_{0} }} S_{{t_{0} }} > X_{T} S_{T} } \right)}} \left| {F_{0} } \right.} \right] + E^{Q} \left[ {\left( {K - X_{T} S{}_{T}} \right) \cdot 1_{{\left( {X_{{t_{0} }} S_{{t_{0} }} \le K,\,X_{T} S_{T} < K} \right)}} \left| {F_{0} } \right.} \right]} \right\} \\ &= e^{{ - r_{d} T}} E^{Q} \left[ {\left( {X_{{t_{0} }} S_{{t_{0} }} - X_{T} S{}_{T}} \right) \cdot 1_{{\left( {X_{{t_{0} }} S_{{t_{0} }} > K,\,X_{{t_{0} }} S_{{t_{0} }} > X_{T} S_{T} } \right)}} \left| {F_{0} } \right.} \right] + e^{{ - r_{d} T}} E^{Q} \left[ {\left( {K - X_{T} S{}_{T}} \right) \cdot 1_{{\left( {X_{{t_{0} }} S_{{t_{0} }} \le K,\,X_{T} S_{T} < K} \right)}} \left| {F_{0} } \right.} \right] \\ &= RP_{31} + RP_{32} . \\ \end{aligned}$$
(C.1)

The first component \(RP_{31}\) of (C.1) is computed below:

$$\begin{aligned} RP_{31} &= e^{{ - r_{d} T}} E^{Q} \left[ {E^{Q} \left[ {\left( {X_{{t_{0} }} S_{{t_{0} }} - X_{T} S{}_{T}} \right) \cdot 1_{{\left( {X_{{t_{0} }} S_{{t_{0} }} > K,\,X_{{t_{0} }} S_{{t_{0} }} > X_{T} S_{T} } \right)}} \left| {F_{{t_{0} }} } \right.} \right]\left| {F_{0} } \right.} \right] \\ &= e^{{ - r_{d} T}} \left\{ {E^{Q} \left[ {E^{Q} \left[ {X_{{t_{0} }} S_{{t_{0} }} \cdot 1_{{\left( {X_{{t_{0} }} S_{{t_{0} }} > K,\,X_{{t_{0} }} S_{{t_{0} }} > X_{T} S_{T} } \right)}} \left| {F_{{t_{0} }} } \right.} \right]\left| {F_{0} } \right.} \right]} \right. \\ &\left. { -\, E^{Q} \left[ {E^{Q} \left[ {X_{T} S{}_{T} \cdot 1_{{\left( {X_{{t_{0} }} S_{{t_{0} }} > K,\,X_{{t_{0} }} S_{{t_{0} }} > X_{T} S_{T} } \right)}} \left| {F_{{t_{0} }} } \right.} \right]\left| {F_{0} } \right.} \right]} \right\} \\ &= e^{{ - r_{d} T}} \left\{ {E^{Q} \left[ {X_{{t_{0} }} S_{{t_{0} }} E^{Q} \left[ {1_{{\left( {X_{{t_{0} }} S_{{t_{0} }} > K} \right)}} 1_{{\left( {\,X_{{t_{0} }} S_{{t_{0} }} > X_{T} S_{T} } \right)}} \left| {F_{{t_{0} }} } \right.} \right]\left| {F_{0} } \right.} \right]} \right. \\ &\left. { -\, E^{Q} \left[ {X_{{t_{0} }} S{}_{{t_{0} }}E^{Q} \left[ {e^{{\left[ {r_{d} - \tfrac{1}{2}\left( {\sigma_{S}^{2} + 2\rho \sigma_{S} \sigma_{X} + \sigma_{X}^{2} } \right)} \right]\left( {T - t_{0} } \right) + \sigma_{S} Z_{{T - t_{0} }}^{Q} + \sigma_{X} w_{{T - t_{0} }}^{Q} }} \cdot 1_{{\left( {X_{{t_{0} }} S_{{t_{0} }} > K} \right)}} 1_{{\left( {\,X_{{t_{0} }} S_{{t_{0} }} > X_{T} S_{T} } \right)}} \left| {F_{{t_{0} }} } \right.} \right]\left| {F_{0} } \right.} \right]} \right\} \\ &= e^{{ - r_{d} T}} \left\{ {E^{Q} \left[ {X_{{t_{0} }} S_{{t_{0} }} 1_{{\left( {X_{{t_{0} }} S_{{t_{0} }} > K} \right)}} E^{Q} \left[ {1_{{\left( {\,X_{{t_{0} }} S_{{t_{0} }} > X_{T} S_{T} } \right)}} \left| {F_{{t_{0} }} } \right.} \right]\left| {F_{0} } \right.} \right]} \right. &\\ \left. { - E^{Q} \left[ {X_{{t_{0} }} S{}_{{t_{0} }}e^{{r_{d} \left( {T - t_{0} } \right)}} 1_{{\left( {X_{{t_{0} }} S_{{t_{0} }} > K} \right)}} E^{{R_{4} }} \left[ {1_{{\left( {\,X_{{t_{0} }} S_{{t_{0} }} > X_{T} S_{T} } \right)}} \left| {F_{{t_{0} }} } \right.} \right]\left| {F_{0} } \right.} \right]} \right\} \\ &= e^{{ - r_{d} T}} \left\{ {X_{0} S_{0} E^{Q} \left[ {e^{{\left[ {r_{d} - \tfrac{1}{2}\left( {\sigma_{S}^{2} + 2\rho \sigma_{S} \sigma_{X} + \sigma_{X}^{2} } \right)} \right]t_{0} + \sigma_{S} Z_{{t_{0} }}^{Q} + \sigma_{X} w_{{t_{0} }}^{Q} }} \cdot 1_{{\left( {X_{{t_{0} }} S_{{t_{0} }} > K} \right)}} \left| {F_{0} } \right.} \right]} \right.E^{Q} \left[ {1_{{\left( {\,X_{{t_{0} }} S_{{t_{0} }} > X_{T} S_{T} } \right)}} \left| {F_{{t_{0} }} } \right.} \right] \\ &\left. { - X_{0} S{}_{0}e^{{r_{d} \left( {T - t_{0} } \right)}} E^{Q} \left[ {e^{{\left[ {r_{d} - \tfrac{1}{2}\left( {\sigma_{S}^{2} + 2\rho \sigma_{S} \sigma_{X} + \sigma_{X}^{2} } \right)} \right]t_{0} + \sigma_{S} Z_{{t_{0} }}^{Q} + \sigma_{X} w_{{t_{0} }}^{Q} }} \cdot 1_{{\left( {X_{{t_{0} }} S_{{t_{0} }} > K} \right)}} \left| {F_{0} } \right.} \right]E^{{R_{4} }} \left[ {1_{{\left( {\,X_{{t_{0} }} S_{{t_{0} }} > X_{T} S_{T} } \right)}} \left| {F_{{t_{0} }} } \right.} \right]} \right\} \\ &= e^{{ - r_{d} T}} \left\{ {X_{0} S_{0} e^{{r_{d} t_{0} }} E^{{R_{4} }} \left[ {1_{{\left( {X_{{t_{0} }} S_{{t_{0} }} > K} \right)}} \left| {F_{0} } \right.} \right]} \right.E^{Q} \left[ {1_{{\left( {\,X_{{t_{0} }} S_{{t_{0} }} > X_{T} S_{T} } \right)}} \left| {F_{{t_{0} }} } \right.} \right] \\ \left. { - X_{0} S{}_{0}e^{{r_{d} T}} E^{{R_{4} }} \left[ {1_{{\left( {X_{{t_{0} }} S_{{t_{0} }} > K} \right)}} \left| {F_{0} } \right.} \right]E^{{R_{4} }} \left[ {1_{{\left( {\,X_{{t_{0} }} S_{{t_{0} }} > X_{T} S_{T} } \right)}} \left| {F_{{t_{0} }} } \right.} \right]} \right\}. \\ \end{aligned}$$
(C.2)

The above derivation uses Girsanov theorem to make change of measure from Q measure to \(R_{4}\) measure23, and then employs (C) in Appendix E. Arranging the terms, we get

$$RP_{21} = \left\{ {X_{0} S_{0} e^{{ - r_{f} \left( {T - t_{0} } \right)}} N\left( {d_{5} } \right)N\left( { - b_{6} } \right) - X_{0} S_{0} N\left( {d_{5} } \right)N\left( { - b_{5} } \right)} \right\}.$$
(C.3)

Next, the second component \(RP_{32}\) is decomposed into two terms. Then we employ Girsanov theorem to make change of measure and use (C) in Appendix E to derive the following:24

$$\begin{aligned} RP_{32} &= e^{{ - r_{d} T}} E^{Q} \left[ {\left( {K - X_{T} S{}_{T}} \right) \cdot 1_{{\left( {X_{{t_{0} }} S_{{t_{0} }} \le K,\,X_{T} S_{T} < K} \right)}} \left| {F_{0} } \right.} \right] \\ &= e^{{ - r_{d} T}} \left\{ {KE^{Q} \left[ {1_{{\left( {X_{{t_{0} }} S_{{t_{0} }} \le K,\,X_{T} S_{T} < K} \right)}} \left| {F_{0} } \right.} \right] - E^{Q} \left[ {X_{T} S_{T} \cdot 1_{{\left( {X_{{t_{0} }} S_{{t_{0} }} \le K,\,X_{T} S_{T} < K} \right)}} \left| {F_{0} } \right.} \right]} \right\} \\ &= e^{{ - r_{d} T}} \left\{ {KE^{Q} \left[ {1_{{\left( {X_{{t_{0} }} S_{{t_{0} }} \le K,\,X_{T} S_{T} < K} \right)}} \left| {F_{0} } \right.} \right] - X_{0} S_{0} E^{Q} \left[ {e^{{\left[ {r_{d} - \tfrac{1}{2}\left( {\sigma_{S}^{2} + 2\rho \sigma_{S} \sigma_{X} + \sigma_{X}^{2} } \right)} \right]T + \sigma_{S} Z_{T}^{Q} + \sigma_{X} w_{T}^{Q} }} \cdot 1_{{\left( {X_{{t_{0} }} S_{{t_{0} }} \le K,\,X_{T} S_{T} < K} \right)}} \left| {F_{0} } \right.} \right]} \right\} \\ &= e^{{ - r_{d} T}} \left\{ {KE^{Q} \left[ {1_{{\left( {X_{{t_{0} }} S_{{t_{0} }} \le K,\,X_{T} S_{T} < K} \right)}} \left| {F_{0} } \right.} \right] - X_{0} S_{0} e^{{r_{d} T}} E^{{R_{4} }} \left[ {1_{{\left( {X_{{t_{0} }} S_{{t_{0} }} \le K,\,X_{T} S_{T} < K} \right)}} \left| {F_{0} } \right.} \right]} \right\} \\ &= e^{{ - r_{d} T}} \left\{ {KN\left( { - d_{6} ,\; - \tilde{b}_{6} ,\;\sqrt {{\raise0.5ex\hbox{$\scriptstyle {t_{0} }$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle T$}}} } \right) - X_{0} S_{0} e^{{r_{d} T}} N\left( { - d_{5} ,\; - \tilde{b}_{5} ,\;\sqrt {{\raise0.5ex\hbox{$\scriptstyle {t_{0} }$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle T$}}} } \right)} \right\} \\ &= Ke^{{ - r_{d} T}} N\left( { - d_{6} ,\; - \tilde{b}_{6} ,\;\sqrt {{\raise0.5ex\hbox{$\scriptstyle {t_{0} }$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle T$}}} } \right) - X_{0} S_{0} N\left( { - d_{5} ,\; - \tilde{b}_{5} ,\;\sqrt {{\raise0.5ex\hbox{$\scriptstyle {t_{0} }$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle T$}}} } \right). \\ \end{aligned}$$
(C.4)

Substituting (C.3) and (C.4) into (C.1), we obtain the pricing model for the Type-3 Quanto reset put options as given below:

$$\begin{aligned} RP_{3} \left( {X_{0} S_{0} ,\;K,\;0} \right) &= X_{0} S_{0} e^{{ - r_{f} \left( {T - t_{0} } \right)}} N\left( {d_{5} } \right)N\left( { - b_{6} } \right) - X_{0} S_{0} N\left( {d_{5} } \right)N\left( { - b_{5} } \right) \\ & \quad+\, Ke^{{ - r_{d} T}} N\left( { - d_{6} ,\; - \tilde{b}_{6} ,\;\sqrt {{\raise0.5ex\hbox{$\scriptstyle {t_{0} }$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle T$}}} } \right) - X_{0} S_{0} N\left( { - d_{5} ,\; - \tilde{b}_{5} ,\;\sqrt {{\raise0.5ex\hbox{$\scriptstyle {t_{0} }$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle T$}}} } \right) \\ \end{aligned}.$$

\(\quad \square\)

Appendix D

Proof of Proposition 4: equation (17)

Based on the payoff structure as given in equation (16), the price of the Type-4 Quanto reset put option is computed as follows:

$$\begin{aligned} RP_{4} \left( {X_{0} ,\;L,\;0} \right) &= e^{{ - r_{d} T}} \left\{ {E^{Q} \left[ {S_{T} \left( {X_{{t_{0} }} - X{}_{T}} \right) \cdot 1_{{\left( {X_{{t_{0} }} > L,\,X_{{t_{0} }} > X_{T} } \right)}} \left| {F_{0} } \right.} \right] + E^{Q} \left[ {S_{T} \left( {L - X{}_{T}} \right) \cdot 1_{{\left( {X_{{t_{0} }} \le L,\,X_{T} < L} \right)}} \left| {F_{0} } \right.} \right]} \right\} \\ &= e^{{ - r_{d} T}} E^{Q} \left[ {S_{T} \left( {X_{{t_{0} }} - X{}_{T}} \right) \cdot 1_{{\left( {X_{{t_{0} }} > L,\,X_{{t_{0} }} > X_{T} } \right)}} \left| {F_{0} } \right.} \right] + e^{{ - r_{d} T}} E^{Q} \left[ {S_{T} \left( {L - X{}_{T}} \right) \cdot 1_{{\left( {X_{{t_{0} }} \le L,\,X_{T} < L} \right)}} \left| {F_{0} } \right.} \right] \\ &= RP_{41} + RP_{42} . \\ \end{aligned}$$
(D.1)

The first component \(RP_{41}\) of (D.1) is derived using the law of iterated conditional expections:

$$\begin{aligned} RP_{41} &= e^{{ - r_{d} T}} E^{Q} \left[ {E^{Q} \left[ {S_{T} \left( {X_{{t_{0} }} - X{}_{T}} \right) \cdot 1_{{\left( {X_{{t_{0} }} > L,\,X_{{t_{0} }} > X_{T} } \right)}} \left| {F_{{t_{0} }} } \right.} \right]\left| {F_{0} } \right.} \right] \\ &= e^{{ - r_{d} T}} \left\{ {E^{Q} \left[ {E^{Q} \left[ {S_{T} X_{{t_{0} }} \cdot 1_{{\left( {X_{{t_{0} }} > L,\,X_{{t_{0} }} > X_{T} } \right)}} \left| {F_{{t_{0} }} } \right.} \right]\left| {F_{0} } \right.} \right] - E^{Q} \left[ {E^{Q} \left[ {S_{T} X{}_{T} \cdot 1_{{\left( {X_{{t_{0} }} > L,\,X_{{t_{0} }} > X_{T} } \right)}} \left| {F_{{t_{0} }} } \right.} \right]\left| {F_{0} } \right.} \right]} \right\} \\ &= e^{{ - r_{d} T}} \left\{ {E^{Q} \left[ {S_{{t_{0} }} X_{{t_{0} }} E^{Q} \left[ {e^{{\left( {r_{f} - \rho \sigma_{S} \sigma_{X} - \tfrac{1}{2}\sigma_{X}^{2} } \right)\left( {T - t_{0} } \right) + \sigma_{X} w_{{T - t_{0} }}^{Q} }} \cdot 1_{{\left( {X_{{t_{0} }} > L} \right)}} 1_{{\left( {\,X_{{t_{0} }} > X_{T} } \right)}} \left| {F_{{t_{0} }} } \right.} \right]\left| {F_{0} } \right.} \right]} \right. \\ &\quad \left. { -\, E^{Q} \left[ {S_{{t_{0} }} X{}_{{t_{0} }}E^{Q} \left[ {e^{{\left[ {r_{d} - \tfrac{1}{2}\left( {\sigma_{S}^{2} + 2\rho \sigma_{S} \sigma_{X} + \sigma_{X}^{2} } \right)} \right]\left( {T - t_{0} } \right) + \sigma_{S} Z_{{T - t_{0} }}^{Q} + \sigma_{X} w_{{T - t_{0} }}^{Q} }} \cdot 1_{{\left( {X_{{t_{0} }} > L} \right)}} 1_{{\left( {\,X_{{t_{0} }} > X_{T} } \right)}} \left| {F_{{t_{0} }} } \right.} \right]\left| {F_{0} } \right.} \right]} \right\} \\ &= e^{{ - r_{d} T}} \left\{ {E^{Q} \left[ {S_{{t_{0} }} X_{{t_{0} }} e^{{\left( {r_{f} - \rho \sigma_{S} \sigma_{X} } \right)\left( {T - t_{0} } \right)}} 1_{{\left( {X_{{t_{0} }} > L} \right)}} E^{{R_{5} }} \left[ {1_{{\left( {X_{{t_{0} }} > X_{T} } \right)}} \left| {F_{{t_{0} }} } \right.} \right]\left| {F_{0} } \right.} \right]} \right. \\ &\quad \left. { -\, E^{Q} \left[ {S_{{t_{0} }} X{}_{{t_{0} }}e^{{r_{d} \left( {T - t_{0} } \right)}} 1_{{\left( {X_{{t_{0} }} > L} \right)}} E^{{R_{6} }} \left[ {1_{{\left( {X_{{t_{0} }} > X_{T} } \right)}} \left| {F_{{t_{0} }} } \right.} \right]\left| {F_{0} } \right.} \right]} \right\} \\ &= e^{{ - r_{d} T}} \left\{ {S_{0} X_{0} e^{{\left( {r_{f} - \rho \sigma_{S} \sigma_{X} } \right)\left( {T - t_{0} } \right)}} E^{Q} \left[ {e^{{\left[ {r_{d} - \tfrac{1}{2}\left( {\sigma_{S}^{2} + 2\rho \sigma_{S} \sigma_{X} + \sigma_{X}^{2} } \right)} \right]t_{0} + \sigma_{S} Z_{{t_{0} }}^{Q} + \sigma_{X} w_{{t_{0} }}^{Q} }} \cdot 1_{{\left( {X_{{t_{0} }} > L} \right)}} \left| {F_{0} } \right.} \right]} \right.E^{{R_{5} }} \left[ {1_{{\left( {X_{{t_{0} }} > X_{T} } \right)}} \left| {F_{{t_{0} }} } \right.} \right] \\ & \quad \left. { -\, S_{0} X{}_{0}e^{{r_{d} \left( {T - t_{0} } \right)}} E^{Q} \left[ {e^{{\left[ {r_{d} - \tfrac{1}{2}\left( {\sigma_{S}^{2} + 2\rho \sigma_{S} \sigma_{X} + \sigma_{X}^{2} } \right)} \right]t_{0} + \sigma_{S} Z_{{t_{0} }}^{Q} + \sigma_{X} w_{{t_{0} }}^{Q} }} \cdot 1_{{\left( {X_{{t_{0} }} > L} \right)}} \left| {F_{0} } \right.} \right]E^{{R_{6} }} \left[ {1_{{\left( {X_{{t_{0} }} > X_{T} } \right)}} \left| {F_{{t_{0} }} } \right.} \right]} \right\} \\ &= e^{{ - r_{d} T}} \left\{ {S_{0} X_{0} e^{{\left( {r_{f} - \rho \sigma_{S} \sigma_{X} } \right)\left( {T - t_{0} } \right)}} e^{{r_{d} t_{0} }} E^{{R_{6} }} \left[ {1_{{\left( {X_{{t_{0} }} > L} \right)}} \left| {F_{0} } \right.} \right]} \right.E^{{R_{5} }} \left[ {1_{{\left( {X_{{t_{0} }} > X_{T} } \right)}} \left| {F_{{t_{0} }} } \right.} \right] \\ & \quad \left. { -\, S_{0} X{}_{0}e^{{r_{d} T}} E^{{R_{6} }} \left[ {1_{{\left( {X_{{t_{0} }} > L} \right)}} \left| {F_{0} } \right.} \right]E^{{R_{6} }} \left[ {1_{{\left( {X_{{t_{0} }} > X_{T} } \right)}} \left| {F_{{t_{0} }} } \right.} \right]} \right\}. \\ \end{aligned}$$
(D.2)

The above derivation employs Girsanov theorem to make change of measure from \(Q\) measure into \(R_{5}\) measure and \(R_{6}\) measure25 and (D) in Appendix E. Arranging the terms, we get26

$$RP_{41} = S_{0} \left\{ {X_{0} e^{{ - \left( {r_{d} - r_{f} + \rho \sigma_{S} \sigma_{X} } \right)\left( {T - t_{0} } \right)}} N\left( {d_{7} } \right)N\left( { - b_{8} } \right) - X{}_{0}N\left( {d_{7} } \right)N\left( { - b_{7} } \right)} \right\}.$$
(D.3)

Next, the second component \(RP_{42}\) is decomposed into two terms. Then we employ Girsanov theorem to make change of measure and use (D) in Appendix E to derive the following:27

$$\begin{aligned} RP_{42} &= e^{{ - r_{d} T}} E^{Q} \left[ {S_{T} \left( {L - X{}_{T}} \right) \cdot 1_{{\left( {X_{{t_{0} }} \le L,\,X_{T} < L} \right)}} \left| {F_{0} } \right.} \right] \\ &= e^{{ - r_{d} T}} \left\{ {LE^{Q} \left[ {S_{T} \cdot 1_{{\left( {X_{{t_{0} }} \le L,\,X_{T} < L} \right)}} \left| {F_{0} } \right.} \right] - E^{Q} \left[ {S_{T} X_{T} \cdot 1_{{\left( {X_{{t_{0} }} \le L,\,X_{T} < L} \right)}} \left| {F_{0} } \right.} \right]} \right\} \\ &= e^{{ - r_{d} T}} \left\{ {LS_{0} e^{{\left( {r_{f} - \rho \sigma_{S} \sigma_{X} } \right)T}} E^{{R_{5} }} \left[ {1_{{\left( {X_{{t_{0} }} \le L,\,X_{T} < L} \right)}} \left| {F_{0} } \right.} \right] - X_{0} S_{0} e^{{r_{d} T}} E^{{R_{6} }} \left[ {1_{{\left( {X_{{t_{0} }} \le L,\,X_{T} < L} \right)}} \left| {F_{0} } \right.} \right]} \right\} \\ &= e^{{ - r_{d} T}} S_{0} \left\{ {Le^{{\left( {r_{f} - \rho \sigma_{S} \sigma_{X} } \right)T}} N\left( { - d_{8} ,\; - \tilde{b}_{8} ,\;\sqrt {{\raise0.5ex\hbox{$\scriptstyle {t_{0} }$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle T$}}} } \right) - X_{0} e^{{r_{d} T}} N\left( { - d_{7} ,\; - \tilde{b}_{7} ,\;\sqrt {{\raise0.5ex\hbox{$\scriptstyle {t_{0} }$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle T$}}} } \right)} \right\} \\ &= S_{0} \left\{ {Le^{{ - \left( {r_{d} - r_{f} + \rho \sigma_{S} \sigma_{X} } \right)T}} N\left( { - d_{8} ,\; - \tilde{b}_{8} ,\;\sqrt {{\raise0.5ex\hbox{$\scriptstyle {t_{0} }$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle T$}}} } \right) - X_{0} N\left( { - d_{7} ,\; - \tilde{b}_{7} ,\;\sqrt {{\raise0.5ex\hbox{$\scriptstyle {t_{0} }$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle T$}}} } \right)} \right\}. \\ \end{aligned}$$
(D.4)

Substituting (D.3) and (D.4) into (D.1), we obtain the pricing model for the Type-4 Quanto reset put option as given below:

$$\begin{aligned} RP_{4} \left( {X_{0} ,\;L,\;0} \right) &= S_{0} \left\{ {X_{0} e^{{ - \left( {r_{d} - r_{f} + \rho \sigma_{S} \sigma_{X} } \right)\left( {T - t_{0} } \right)}} N\left( {d_{7} } \right)N\left( { - b_{8} } \right) - X{}_{0}N\left( {d_{7} } \right)N\left( { - b_{7} } \right)} \right. \\ &\quad \left. { +\, Le^{{ - \left( {r_{d} - r_{f} + \rho \sigma_{S} \sigma_{X} } \right)T}} N\left( { - d_{8} ,\; - \tilde{b}_{8} ,\;\sqrt {{\raise0.5ex\hbox{$\scriptstyle {t_{0} }$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle T$}}} } \right) - X_{0} N\left( { - d_{7} ,\; - \tilde{b}_{7} ,\;\sqrt {{\raise0.5ex\hbox{$\scriptstyle {t_{0} }$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle T$}}} } \right)} \right\}. \\ \end{aligned}$$

\(\quad \square\)

Appendix E

This Appendix summarizes the necessary mathematical results for the previous proofs. The following conditional expectations are computed using Girsanov theorem:28

$$\begin{aligned} E^{{R_{1} }} \left\{ {1_{{\left[ {S_{{t_{0} }} > K} \right]}} \left| {F_{{t_{0} }} } \right.} \right\} &= \Pr^{{R_{1} }} \left\{ {S_{{t_{0} }} > K\left| {F_{{t_{0} }} } \right.} \right\} \hfill \\ \quad \quad \quad \quad \quad \quad \quad &= \Pr^{Q} \left\{ {\tfrac{{ - z_{{t_{0} }}^{{R_{1} }} }}{{\sqrt {t_{0} } }} < \tfrac{{\ln \left( {{\raise0.5ex\hbox{$\scriptstyle {S_{0} }$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle K$}}} \right) + \left( {r_{f} - \rho \sigma_{S} \sigma_{X} + \tfrac{1}{2}\sigma_{S}^{2} } \right)\,t_{0} }}{{\sigma_{S} \sqrt {t_{0} } }}} \right\} &= N\left( {\tfrac{{\ln \left( {{\raise0.5ex\hbox{$\scriptstyle {S_{0} }$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle K$}}} \right) + \left( {r_{f} - \rho \sigma_{S} \sigma_{X} + \tfrac{1}{2}\sigma_{S}^{2} } \right)\,t_{0} }}{{\sigma_{S} \sqrt {t_{0} } }}} \right) &= N\left( {d_{1} } \right), \hfill \\ E^{{R_{1} }} \left\{ {1_{{\left[ {S_{{t_{0} }} > S_{T} } \right]}} \left| {F_{{t_{0} }} } \right.} \right\} &= \Pr^{{R_{1} }} \left\{ {S_{{t_{0} }} > S_{T} \left| {F_{{t_{0} }} } \right.} \right\} \hfill \\ \quad \quad \quad \quad \quad \quad \quad = \Pr^{{R_{1} }} \left\{ {\tfrac{{z_{{T - t_{0} }}^{{R_{1} }} }}{{\sqrt {T - t_{0} } }} < - \tfrac{{\left( {r_{f} - \rho \sigma_{S} \sigma_{X} + \tfrac{1}{2}\sigma_{S}^{2} } \right)\left( {T - t_{0} } \right)}}{{\sigma_{S} \sqrt {T - t_{0} } }}} \right\} &= N\left( { - \tfrac{{\left( {r_{f} - \rho \sigma_{S} \sigma_{X} + \tfrac{1}{2}\sigma_{S}^{2} } \right)\left( {T - t_{0} } \right)}}{{\sigma_{S} \sqrt {T - t_{0} } }}} \right) = N\left( { - b_{1} } \right), \hfill \\ E^{Q} \left\{ {1_{{\left[ {S_{{t_{0} }} < K,S_{T} < K} \right]}} } \right\} &= \Pr^{Q} \left\{ {S_{{t_{0} }} < K,S_{T} < K} \right\} \hfill \\ \quad \quad \quad \quad \quad \quad \quad &= \Pr^{Q} \left\{ {\tfrac{{z_{{t_{0} }}^{Q} }}{{\sqrt {t_{0} } }} < - \tfrac{{\ln \left( {{\raise0.5ex\hbox{$\scriptstyle {S_{0} }$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle K$}}} \right) + \left( {r_{f} - \rho \sigma_{S} \sigma_{X} - \tfrac{1}{2}\sigma_{S}^{2} } \right)\,t_{0} }}{{\sigma_{S} \sqrt {t_{0} } }},\tfrac{{z_{T}^{Q} }}{\sqrt T } < - \tfrac{{\ln \left( {{\raise0.5ex\hbox{$\scriptstyle {S_{0} }$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle K$}}} \right) + \left( {r_{f} - \rho \sigma_{S} \sigma_{X} - \tfrac{1}{2}\sigma_{S}^{2} } \right)\,T}}{{\sigma_{S} \sqrt T }}} \right\} = N_{2} \left( { - d_{2} , - \tilde{b}_{2} ,\sqrt {{\raise0.5ex\hbox{$\scriptstyle {t_{0} }$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle T$}}} } \right), \hfill \\ E^{{R_{1} }} \left\{ {1_{{\left[ {S_{{t_{0} }} < K,S_{T} < K} \right]}} } \right\} &= \Pr^{{R_{1} }} \left\{ {S_{{t_{0} }} < K,S_{T} < K} \right\} \hfill \\ \quad \quad \quad \quad \quad \quad \quad &= \Pr^{{R_{1} }} \left\{ {\tfrac{{z_{{t_{0} }}^{{R_{1} }} }}{{\sqrt {t_{0} } }} < - \tfrac{{\ln \left( {{\raise0.5ex\hbox{$\scriptstyle {S_{0} }$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle K$}}} \right) + \left( {r_{f} - \rho \sigma_{S} \sigma_{X} + \tfrac{1}{2}\sigma_{S}^{2} } \right)\,t_{0} }}{{\sigma_{S} \sqrt {t_{0} } }},\tfrac{{z_{T}^{{R_{1} }} }}{\sqrt T } < - \tfrac{{\ln \left( {{\raise0.5ex\hbox{$\scriptstyle {S_{0} }$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle K$}}} \right) + \left( {r_{f} - \rho \sigma_{S} \sigma_{X} + \tfrac{1}{2}\sigma_{S}^{2} } \right)\,T}}{{\sigma_{S} \sqrt T }}} \right\} = N_{2} \left( { - d_{1} , - \tilde{b}_{1} ,\sqrt {{\raise0.5ex\hbox{$\scriptstyle {t_{0} }$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle T$}}} } \right), \hfill \\ \end{aligned}$$
(A)

where we use Givsanov theorem to transform the risk-neutral probability measure \(Q\) into the risk-neutral probability measure \(R_{1}\) and Brownian motion under \(R_{1}\) measure transformed from \(Q\) measure is \(dz_{S}^{Q} = dz_{S}^{{R_{1} }} + \sigma_{S} dt\). And let \(d_{1} \left( {S_{0} ,K,t_{0} } \right) = \tfrac{{\ln \left( {{\raise0.5ex\hbox{$\scriptstyle {S_{0} }$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle K$}}} \right) + \left( {r_{f} - \rho \sigma_{S} \sigma_{X} + \tfrac{1}{2}\sigma_{S}^{2} } \right)\,t_{0} }}{{\sigma_{S} \sqrt {t_{0} } }}\), \(b_{1} = d_{1} \left( {S_{0} ,S_{0} ,T - t_{0} } \right)\), \(\tilde{b}_{1} = d_{1} \left( {S_{0} ,K,T} \right)\), \(d_{2} = d_{1} - \sigma_{S} \sqrt {t_{0} }\), \(b_{2} = b_{1} - \sigma_{S} \sqrt {T - t_{0} }\), \(\tilde{b}_{2} = \tilde{b}_{1} - \sigma_{S} \sqrt T\). \(N\left( \cdot \right)\) and \(N_{2} \left( { \cdot , \cdot } \right)\) represent, respectively, the univariate and bivariate cumulative normal probabilities.

$$\begin{aligned} E^{{R_{2} }} \left\{ {1_{{\left[ {S_{{t_{0} }} > S_{T} } \right]}} \left| {F_{{t_{0} }} } \right.} \right\} = \Pr^{{R_{2} }} \left\{ {S_{{t_{0} }} > S_{T} \left| {F_{{t_{0} }} } \right.} \right\} = \Pr^{{R_{2} }} \left\{ {\tfrac{{z_{{T - t_{0} }}^{{R_{2} }} }}{{\sqrt {T - t_{0} } }} < - \tfrac{{\left( {r_{f} - \tfrac{1}{2}\sigma_{S}^{2} } \right)\,\left( {T - t_{0} } \right)}}{{\sigma_{S} \sqrt {T - t_{0} } }}} \right\} = N\left( { - \tfrac{{\left( {r_{f} - \tfrac{1}{2}\sigma_{S}^{2} } \right)\left( {T - \,t_{0} } \right)}}{{\sigma_{S} \sqrt {T - t_{0} } }}} \right) = N\left( { - b_{4} } \right), \hfill \\ E^{{R_{3} }} \left\{ {1_{{\left[ {S_{{t_{0} }} > K} \right]}} \left| {F_{{t_{0} }} } \right.} \right\} = \Pr^{{R_{3} }} \left\{ {S_{{t_{0} }} > K\left| {F_{{t_{0} }} } \right.} \right\} = \Pr^{{R_{3} }} \left\{ {\tfrac{{ - z_{{t_{0} }}^{{R_{3} }} }}{{\sqrt {t_{0} } }} < \tfrac{{\ln \left( {{\raise0.5ex\hbox{$\scriptstyle {S_{0} }$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle K$}}} \right) + \left( {r_{f} + \tfrac{1}{2}\sigma_{S}^{2} } \right)\,t_{0} }}{{\sigma_{S} \sqrt {t_{0} } }}} \right\} = N\left( {\tfrac{{\ln \left( {{\raise0.5ex\hbox{$\scriptstyle {S_{0} }$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle K$}}} \right) + \left( {r_{f} + \tfrac{1}{2}\sigma_{S}^{2} } \right)\,t_{0} }}{{\sigma_{S} \sqrt {t_{0} } }}} \right) = N\left( {d_{3} } \right), \hfill \\ E^{{R_{3} }} \left\{ {1_{{\left[ {S_{{t_{0} }} > S_{T} } \right]}} \left| {F_{{t_{0} }} } \right.} \right\} = \Pr^{{R_{3} }} \left\{ {S_{{t_{0} }} > S_{T} \left| {F_{{t_{0} }} } \right.} \right\} = \Pr^{{R_{3} }} \left\{ {\tfrac{{z_{{T - t_{0} }}^{{R_{3} }} }}{{\sqrt {T - t_{0} } }} < - \tfrac{{\left( {r_{f} + \tfrac{1}{2}\sigma_{S}^{2} } \right)\left( {T - t_{0} } \right)}}{{\sigma_{S} \sqrt {T - t_{0} } }}} \right\} = N\left( { - \tfrac{{\left( {r_{f} + \tfrac{1}{2}\sigma_{S}^{2} } \right)\left( {T - t_{0} } \right)}}{{\sigma_{S} \sqrt {T - t_{0} } }}} \right) = N\left( { - b_{3} } \right), \hfill \\ E^{{R_{2} }} \left\{ {1_{{\left[ {S_{{t_{0} }} < K,S_{T} < K} \right]}} } \right\} = \Pr^{{R_{2} }} \left\{ {S_{{t_{0} }} < K,S_{T} < K} \right\} \hfill \\ \quad \quad \quad \quad \quad \quad \quad = \Pr^{{R_{2} }} \left\{ {\tfrac{{z_{{t_{0} }}^{{R_{2} }} }}{{\sqrt {t_{0} } }} < - \tfrac{{\ln \left( {{\raise0.5ex\hbox{$\scriptstyle {S_{0} }$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle K$}}} \right) + \left( {r_{f} - \tfrac{1}{2}\sigma_{S}^{2} } \right)\,t_{0} }}{{\sigma_{S} \sqrt {t_{0} } }},\tfrac{{z_{T}^{{R_{2} }} }}{\sqrt T } < - \tfrac{{\ln \left( {{\raise0.5ex\hbox{$\scriptstyle {S_{0} }$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle K$}}} \right) + \left( {r_{f} - \tfrac{1}{2}\sigma_{S}^{2} } \right)\,T}}{{\sigma_{S} \sqrt T }}} \right\} = N_{2} \left( { - d_{4} , - \tilde{b}_{4} ,\sqrt {{\raise0.5ex\hbox{$\scriptstyle {t_{0} }$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle T$}}} } \right), \hfill \\ E^{{R_{3} }} \left\{ {1_{{\left[ {S_{{t_{0} }} < K,S_{T} < K} \right]}} } \right\} = \Pr^{{R_{3} }} \left\{ {S_{{t_{0} }} < K,S_{T} < K} \right\} \hfill \\ \quad \quad \quad \quad \quad \quad \quad = \Pr^{{R_{3} }} \left\{ {\tfrac{{z_{{t_{0} }}^{{R_{3} }} }}{{\sqrt {t_{0} } }} < - \tfrac{{\ln \left( {{\raise0.5ex\hbox{$\scriptstyle {S_{0} }$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle K$}}} \right) + \left( {r_{f} + \tfrac{1}{2}\sigma_{S}^{2} } \right)\,t_{0} }}{{\sigma_{S} \sqrt {t_{0} } }},\tfrac{{z_{T}^{{R_{3} }} }}{\sqrt T } < - \tfrac{{\ln \left( {{\raise0.5ex\hbox{$\scriptstyle {S_{0} }$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle K$}}} \right) + \left( {r_{f} + \tfrac{1}{2}\sigma_{S}^{2} } \right)\,T}}{{\sigma_{S} \sqrt T }}} \right\} = N_{2} \left( { - d_{3} , - \tilde{b}_{3} ,\sqrt {{\raise0.5ex\hbox{$\scriptstyle {t_{0} }$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle T$}}} } \right), \hfill \\ \end{aligned}$$
(B)

where the Brownian motions under \(R_{2}\) and \(R_{3}\) measures transformed from \(Q\) measure are, respectively, given by \(dz_{S}^{Q} = dz_{S}^{{R_{2} }} + \rho \sigma_{X} dt\), \(dw_{X}^{Q} = dw_{X}^{{R_{2} }} + \sigma_{X} dt\), \(dz_{S}^{Q} = dz_{S}^{{R_{3} }} + \left( {\sigma_{S} + \rho \sigma_{X} } \right)dt\), and \(dw_{X}^{Q} = dw_{X}^{{R_{3} }} + \left( {\rho \sigma_{S} + \sigma_{X} } \right)dt\). And let \(d_{3} \left( {S_{0} ,K,t_{0} } \right) = \tfrac{{\ln \left( {{\raise0.5ex\hbox{$\scriptstyle {S_{0} }$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle K$}}} \right) + \left( {r_{f} + \tfrac{1}{2}\sigma_{S}^{2} } \right)\,t_{0} }}{{\sigma_{S} \sqrt {t_{0} } }},\) \(b_{3} = d_{3} \left( {S_{0} ,S_{0} ,T - t_{0} } \right)\), \(\tilde{b}_{3} = d_{3} \left( {S_{0} ,K,T} \right)\), \(d_{4} = d_{3} - \sigma_{S} \sqrt {t_{0} }\), \(b_{4} = b_{3} - \sigma_{S} \sqrt {T - t_{0} }\), \(\tilde{b}_{4} = \tilde{b}_{3} - \sigma_{S} \sqrt T\).

$$\begin{aligned} E^{Q} \left\{ {1_{{\left[ {X_{{t_{0} }} S_{{t_{0} }} > X_{T} S_{T} } \right]}} \left| {F_{{t_{0} }} } \right.} \right\} = \Pr^{Q} \left\{ {X_{{t_{0} }} S_{{t_{0} }} > X_{T} S_{T} \left| {F_{{t_{0} }} } \right.} \right\} = \Pr^{Q} \left\{ {\tfrac{{\sigma_{S} z_{{T - t_{0} }}^{Q} + \sigma_{X} w_{{T - t_{0} }}^{Q} }}{{\sigma_{SX} \sqrt {T - t_{0} } }} < - \tfrac{{\left( {r_{d} - \tfrac{1}{2}\sigma_{SX}^{2} } \right)\left( {T - t_{0} } \right)}}{{\sigma_{SX} \sqrt {T - t_{0} } }}} \right\} = N\left( { - \tfrac{{\left( {r_{d} - \tfrac{1}{2}\sigma_{SX}^{2} } \right)\left( {T - t_{0} } \right)}}{{\sigma_{SX} \sqrt {T - t_{0} } }}} \right) = N\left( { - b_{6} } \right), \hfill \\ E^{{R_{4} }} \left\{ {1_{{\left[ {X_{{t_{0} }} S_{{t_{0} }} > K} \right]}} \left| {F_{{t_{0} }} } \right.} \right\} = \Pr^{{R_{4} }} \left\{ {X_{{t_{0} }} S_{{t_{0} }} > K\left| {F_{{t_{0} }} } \right.} \right\} = \Pr^{{R_{4} }} \left\{ { - \tfrac{{\sigma_{S} z_{{t_{0} }}^{{R_{4} }} + \sigma_{X} w_{{t_{0} }}^{{R_{4} }} }}{{\sigma_{SX} \sqrt {t_{0} } }} < \tfrac{{\ln \left( {{\raise0.5ex\hbox{$\scriptstyle {S_{0} }$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle K$}}} \right) + \left( {r_{d} + \tfrac{1}{2}\sigma_{SX}^{2} } \right)\,t_{0} }}{{\sigma_{SX} \sqrt {t_{0} } }}} \right\} = N\left( {\tfrac{{\ln \left( {{\raise0.5ex\hbox{$\scriptstyle {S_{0} }$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle K$}}} \right) + \left( {r_{d} + \tfrac{1}{2}\sigma_{SX}^{2} } \right)\,t_{0} }}{{\sigma_{SX} \sqrt {t_{0} } }}} \right) = N\left( {d_{5} } \right), \hfill \\ E^{{R_{4} }} \left\{ {1_{{\left[ {X_{{t_{0} }} S_{{t_{0} }} > X_{T} S_{T} } \right]}} \left| {F_{{t_{0} }} } \right.} \right\} = \Pr^{{R_{4} }} \left\{ {X_{{t_{0} }} S_{{t_{0} }} > X_{T} S_{T} \left| {F_{{t_{0} }} } \right.} \right\} \hfill \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad = \Pr^{{R_{4} }} \left\{ {\tfrac{{\sigma_{S} z_{{T - t_{0} }}^{Q} + \sigma_{X} w_{{T - t_{0} }}^{Q} }}{{\sigma_{SX} \sqrt {T - t_{0} } }} < - \tfrac{{\left( {r_{d} + \tfrac{1}{2}\sigma_{SX}^{2} } \right)\left( {T - t_{0} } \right)}}{{\sigma_{SX} \sqrt {T - t_{0} } }}} \right\} = N\left( { - \tfrac{{\left( {r_{d} + \tfrac{1}{2}\sigma_{SX}^{2} } \right)\left( {T - t_{0} } \right)}}{{\sigma_{SX} \sqrt {T - t_{0} } }}} \right) = N\left( { - b_{5} } \right), \hfill \\ E^{Q} \left\{ {1_{{\left[ {X_{{t_{0} }} S_{{t_{0} }} < K,X_{T} S_{T} < K} \right]}} } \right\} = \Pr^{Q} \left\{ {X_{{t_{0} }} S_{{t_{0} }} < K,X_{T} S_{T} < K} \right\} \hfill \\ \quad \quad \quad \quad \quad \quad \quad \quad = \Pr^{Q} \left\{ {\tfrac{{\sigma_{S} z_{{T - t_{0} }}^{Q} + \sigma_{X} w_{{T - t_{0} }}^{Q} }}{{\sigma_{SX} \sqrt {T - t_{0} } }} < - \tfrac{{\ln \left( {{\raise0.5ex\hbox{$\scriptstyle {X_{0} S_{0} }$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle K$}}} \right) + \left( {r_{d} - \tfrac{1}{2}\sigma_{SX}^{2} } \right)\,t_{0} }}{{\sigma_{SX} \sqrt {t_{0} } }},\tfrac{{\sigma_{S} z_{T}^{Q} + \sigma_{X} w_{T}^{Q} }}{{\sigma_{SX} \sqrt T }} < - \tfrac{{\ln \left( {{\raise0.5ex\hbox{$\scriptstyle {X_{0} S_{0} }$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle K$}}} \right) + \left( {r_{d} - \tfrac{1}{2}\sigma_{S}^{2} } \right)\,T}}{{\sigma_{S} \sqrt T }}} \right\} = N_{2} \left( { - d_{6} , - \tilde{b}_{6} ,\sqrt {{\raise0.5ex\hbox{$\scriptstyle {t_{0} }$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle T$}}} } \right), \hfill \\ E^{{R_{4} }} \left\{ {1_{{\left[ {X_{{t_{0} }} S_{{t_{0} }} < K,X_{T} S_{T} < K} \right]}} } \right\} = \Pr^{{R_{4} }} \left\{ {X_{{t_{0} }} S_{{t_{0} }} < K,X_{T} S_{T} < K} \right\} \hfill \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad = \Pr^{{R_{4} }} \left\{ {\tfrac{{\sigma_{S} z_{{t_{0} }}^{{R_{4} }} + \sigma_{X} w_{{t_{0} }}^{{R_{4} }} }}{{\sigma_{SX} \sqrt {t_{0} } }} < - \tfrac{{\ln \left( {{\raise0.5ex\hbox{$\scriptstyle {X_{0} S_{0} }$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle K$}}} \right) + \left( {r_{d} + \tfrac{1}{2}\sigma_{SX}^{2} } \right)\,t_{0} }}{{\sigma_{SX} \sqrt {t_{0} } }},\tfrac{{\sigma_{S} z_{T}^{{R_{4} }} + \sigma_{X} w_{T}^{{R_{4} }} }}{{\sigma_{SX} \sqrt T }} < - \tfrac{{\ln \left( {{\raise0.5ex\hbox{$\scriptstyle {X_{0} S_{0} }$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle K$}}} \right) + \left( {r_{d} + \tfrac{1}{2}\sigma_{SX}^{2} } \right)\,T}}{{\sigma_{SX} \sqrt T }}} \right\} = N_{2} \left( { - d_{5} , - \tilde{b}_{5} ,\sqrt {{\raise0.5ex\hbox{$\scriptstyle {t_{0} }$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle T$}}} } \right), \hfill \\ \end{aligned}$$
(C)

where the Brownian motions under \(R_{4}\) measure transformed from \(Q\) measure are given by \(dz_{S}^{Q} = dz_{S}^{{R_{4} }} + \left( {\sigma_{S} + \rho \sigma_{X} } \right)dt\), and \(dw_{X}^{Q} = dw_{X}^{{R_{4} }} + \left( {\rho \sigma_{S} + \sigma_{X} } \right)dt\). And let \(d_{5} \left( {X_{0} S_{0} ,K,t_{0} } \right) = \tfrac{{\ln \left( {{\raise0.5ex\hbox{$\scriptstyle {X_{0} S_{0} }$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle K$}}} \right) + \left( {r_{d} + \tfrac{1}{2}\sigma_{SX}^{2} } \right)\,t_{0} }}{{\sigma_{SX} \sqrt {t_{0} } }}\), \(b_{5} = d_{5} \left( {X_{0} S_{0} ,X_{0} S_{0} ,T - t_{0} } \right)\), \(\tilde{b}_{5} = d_{5} \left( {X_{0} S_{0} ,K,T} \right)\), \(d_{6} = d_{5} - \sigma_{SX} \sqrt {t_{0} }\), \(b_{6} = b_{5} - \sigma_{SX} \sqrt {T - t_{0} }\), \(\tilde{b}_{6} = \tilde{b}_{5} - \sigma_{SX} \sqrt T\), \(\sigma_{SX}^{2} = \sigma_{S}^{2} + 2\rho \sigma_{S} \sigma_{X} + \sigma_{X}^{2}\).

$$\begin{aligned} E^{{R_{5} }} \left\{ {1_{{\left[ {X_{{t_{0} }} > X_{T} } \right]}} \left| {F_{{t_{0} }} } \right.} \right\} = \Pr^{{R_{5} }} \left\{ {X_{{t_{0} }} > X_{T} \left| {F_{{t_{0} }} } \right.} \right\} = \Pr^{{R_{5} }} \left\{ {\tfrac{{w_{{T - t_{0} }}^{{R_{5} }} }}{{\sqrt {T - t_{0} } }} < - \tfrac{{\left( {r_{d} - r_{f} + \rho \sigma_{S} \sigma_{X} - \tfrac{1}{2}\sigma_{S}^{2} } \right)\,\left( {T - t_{0} } \right)}}{{\sigma_{S} \sqrt {T - t_{0} } }}} \right\} = N\left( { - \tfrac{{\left( {r_{d} - r_{f} + \rho \sigma_{S} \sigma_{X} - \tfrac{1}{2}\sigma_{S}^{2} } \right)\left( {T - \,t_{0} } \right)}}{{\sigma_{S} \sqrt {T - t_{0} } }}} \right) = N\left( { - b_{8} } \right), \hfill \\ E^{{R_{6} }} \left\{ {1_{{\left[ {X_{{t_{0} }} > L} \right]}} \left| {F_{{t_{0} }} } \right.} \right\} = \Pr^{{R_{6} }} \left\{ {X_{{t_{0} }} > L\left| {F_{{t_{0} }} } \right.} \right\} = \Pr^{{R_{6} }} \left\{ {\tfrac{{ - w_{{t_{0} }}^{{R_{6} }} }}{{\sqrt {t_{0} } }} < \tfrac{{\ln \left( {{\raise0.5ex\hbox{$\scriptstyle {X_{0} }$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle L$}}} \right) + \left( {r_{d} - r_{f} + \rho \sigma_{S} \sigma_{X} + \tfrac{1}{2}\sigma_{S}^{2} } \right)\,t_{0} }}{{\sigma_{S} \sqrt {t_{0} } }}} \right\} = N\left( {\tfrac{{\ln \left( {{\raise0.5ex\hbox{$\scriptstyle {X_{0} }$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle L$}}} \right) + \left( {r_{d} - r_{f} + \rho \sigma_{S} \sigma_{X} + \tfrac{1}{2}\sigma_{S}^{2} } \right)\,t_{0} }}{{\sigma_{S} \sqrt {t_{0} } }}} \right) = N\left( {d_{7} } \right), \\ E^{{R_{6} }} \left\{ {1_{{\left[ {X_{{t_{0} }} > X_{T} } \right]}} \left| {F_{{t_{0} }} } \right.} \right\} = \Pr^{{R_{6} }} \left\{ {X_{{t_{0} }} > X_{T} \left| {F_{{t_{0} }} } \right.} \right\} = \Pr^{{R_{6} }} \left\{ {\tfrac{{w_{{T - t_{0} }}^{{R_{6} }} }}{{\sqrt {T - t_{0} } }} < - \tfrac{{\left( {r_{d} - r_{f} + \rho \sigma_{S} \sigma_{X} + \tfrac{1}{2}\sigma_{S}^{2} } \right)\left( {T - t_{0} } \right)}}{{\sigma_{S} \sqrt {T - t_{0} } }}} \right\} = N\left( { - \tfrac{{\left( {r_{d} - r_{f} + \rho \sigma_{S} \sigma_{X} + \tfrac{1}{2}\sigma_{S}^{2} } \right)\left( {T - t_{0} } \right)}}{{\sigma_{S} \sqrt {T - t_{0} } }}} \right) = N\left( { - b_{7} } \right), \\ E^{{R_{5} }} \left\{ {1_{{\left[ {X_{{t_{0} }} < L,X_{T} < L} \right]}} } \right\} = \Pr^{{R_{5} }} \left\{ {X_{{t_{0} }} < L,X_{T} < L} \right\} \quad = \Pr^{{R_{5} }} \left\{ {\tfrac{{w_{{t_{0} }}^{{R_{5} }} }}{{\sqrt {t_{0} } }} < - \tfrac{{\ln \left( {{\raise0.5ex\hbox{$\scriptstyle {X_{0} }$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle L$}}} \right) + \left( {r_{d} - r_{f} + \rho \sigma_{S} \sigma_{X} - \tfrac{1}{2}\sigma_{X}^{2} } \right)\,t_{0} }}{{\sigma_{X} \sqrt {t_{0} } }},\tfrac{{w_{T}^{{R_{5} }} }}{\sqrt T } < - \tfrac{{\ln \left( {{\raise0.5ex\hbox{$\scriptstyle {S_{0} }$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle L$}}} \right) + \left( {r_{d} - r_{f} + \rho \sigma_{S} \sigma_{X} - \tfrac{1}{2}\sigma_{X}^{2} } \right)\,T}}{{\sigma_{X} \sqrt T }}} \right\} = N_{2} \left( { - d_{8} , - \tilde{b}_{8} ,\sqrt {{\raise0.5ex\hbox{$\scriptstyle {t_{0} }$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle T$}}} } \right), \\ E^{{R_{6} }} \left\{ {1_{{\left[ {X_{{t_{0} }} < L,X_{T} < L} \right]}} } \right\} = \Pr^{{R_{6} }} \left\{ {X_{{t_{0} }} < L,X_{T} < L} \right\} \hfill \\ \quad \quad \quad \quad \quad \quad \quad = \Pr^{{R_{6} }} \left\{ {\tfrac{{w_{{t_{0} }}^{{R_{6} }} }}{{\sqrt {t_{0} } }} < - \tfrac{{\ln \left( {{\raise0.5ex\hbox{$\scriptstyle {X_{0} }$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle L$}}} \right) + \left( {r_{d} - r_{f} + \rho \sigma_{S} \sigma_{X} + \tfrac{1}{2}\sigma_{X}^{2} } \right)\,t_{0} }}{{\sigma_{X} \sqrt {t_{0} } }},\tfrac{{w_{T}^{{R_{6} }} }}{\sqrt T } < - \tfrac{{\ln \left( {{\raise0.5ex\hbox{$\scriptstyle {X_{0} }$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle L$}}} \right) + \left( {r_{d} - r_{f} + \rho \sigma_{S} \sigma_{X} + \tfrac{1}{2}\sigma_{X}^{2} } \right)\,T}}{{\sigma_{X} \sqrt T }}} \right\} = N_{2} \left( { - d_{7} , - \tilde{b}_{7} ,\sqrt {{\raise0.5ex\hbox{$\scriptstyle {t_{0} }$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle T$}}} } \right), \hfill \\ \end{aligned}$$
(D)

where the Brownian motions under \(R_{5}\) and \(R_{6}\) measures transformed from \(Q\) measure are given by \(dz_{S}^{Q} = dz_{S}^{{R_{5} }} + \sigma_{S} dt\), \(dw_{X}^{Q} = dw_{X}^{{R_{5} }} + \rho \sigma_{S} dt\), \(dz_{S}^{Q} = dz_{S}^{{R_{6} }} + \left( {\sigma_{S} + \rho \sigma_{X} } \right)dt\), and \(dw_{X}^{Q} = dw_{X}^{{R_{6} }} + \left( {\rho \sigma_{S} + \sigma_{X} } \right)dt\). And let \(d_{7} \left( {X_{0} ,L,t_{0} } \right) = \tfrac{{\ln \left( {{\raise0.5ex\hbox{$\scriptstyle {X_{0} }$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle L$}}} \right) + \left( {r_{d} - r_{f} + \rho \sigma_{S} \sigma_{X} + \tfrac{1}{2}\sigma_{X}^{2} } \right)\,t_{0} }}{{\sigma_{X} \sqrt {t_{0} } }},\) \(b_{7} = d_{7} \left( {X_{0} ,X_{0} ,T - t_{0} } \right)\), \(\tilde{b}_{7} = d_{7} \left( {X_{0} ,L,T} \right)\), \(d_{8} = d_{7} - \sigma_{X} \sqrt {t_{0} }\), \(b_{8} = b_{7} - \sigma_{X} \sqrt {T - t_{0} }\), \(\tilde{b}_{8} = \tilde{b}_{7} - \sigma_{X} \sqrt T\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, IM., Lo, C.C., Karathanasopoulos, A. et al. A risk control tool for foreign financial activities – A new derivatives pricing model. J Asset Manag 18, 269–294 (2017). https://doi.org/10.1057/s41260-016-0023-6

Download citation

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1057/s41260-016-0023-6

Keywords

JEL classification

Navigation