Skip to main content
Log in

Enhanced integration of energy-related considerations in discrete event simulation for manufacturing applications

  • Original Article
  • Published:
Journal of Simulation

Abstract

In order to allow for truly holistic considerations, as intended in the Digital Factory concept, energy-related factors need to be considered. This has not been widely implemented for discrete event simulation (ie, material flow simulation) in industrial companies, yet, even though it may foster the energy efficiency within production sites considerably. A primary reason for the lack of acceptance is that previously discussed approaches did not meet the users’ requirements. This paper discusses how a suitable extension (eniBRIC), which renders energy-related considerations possible within material flow simulation, can be developed paying heed to both user requirements and the state of the art. A special focus is set on its implementation in Siemens Tecnomatix Plant Simulation. The workflow for the integration of the extension into existing and new simulation models is outlined. Opportunities for its utilisation in specific application examples, as well as the associated extra time and effort are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Acél PP (1996). Methode zur Durchführung betrieblicher Simulationen – Effiziente Optimierung der diskreten Simulation. PhD Thesis, ETH Zürich.

  • de O Gomes VE, de O Gomes J and Grote K-H (2013). Discrete event simulation inserted into Kaizen event to assess energy efficiency. In: Nee AYC, Song B and Ong S-K (eds). Re-Engineering Manufacturing for Sustainability. Springer Science+Business Media: Singapore, pp 499–478.

    Chapter  Google Scholar 

  • Dietmair A, Verl A and Wosnik M (2008). Zustandsbasierte Energieverbrauchsprofile. wt Werkstattstechnik 98 (7-8): 640–645.

    Google Scholar 

  • Forster T (2013). Modellierung und Simulation von Getränkeabfüll- und Verpackungsanlagen unter Berücksichtigung von Energie- und Medienverbräuchen. In: Dangelmaier W, Laroque C and Klaas A (eds). Simulation in Produktion und Logistik – Entscheidungsunterstützung von der Planung bis zur Steuerung (Tagungsband 15. ASIM Fachtagung) 2013. HNI-Verlagsschriftenreihe: Paderborn, pp 179–206.

    Google Scholar 

  • Fuss E, Drvendzija S and Krewald A (2013). Transparenz als Schlüssel zur energieeffizienten Produktion. Productivity Management 18/3 (): 35–38.

    Google Scholar 

  • Heinicke M (2013). Plant simulation energy simulation, http://community.plm.automation.siemens.com/siemensplm/attachments/siemensplm/tecnomatix-forum%40tkb/6/1/Energy_Simulation_Plant_Simulation_Version_11_mh_07.pptx, accessed 1 March 2015.

  • Hloska J (2013). Working with the modular library automotive. In: Bangsow S (ed) Use Cases of Discrete Event Simulation – Appliance and Research. Springer-Verlag: Berlin, Heidelberg, pp 241–376.

    Google Scholar 

  • Hopp WJ and Spearman ML (2001). Factory Physics – Foundations of Manufacturing Management. Irwin McGraw-Hill: Boston.

    Google Scholar 

  • Junge M (2007). Simulationsgestützte Entwicklung und Optimierung einer energieeffizienten Produktionssteuerung. PhD Thesis, University Kassel, Kassel University press GmbH, Kassel.

  • Krückhans B and Meier H (2013). Industrie 4.0 – Handlungsfelder der Digitalen Fabrik zur Optimierung der Ressourceneffizienz in der Produktion. In: Dangelmaier W, Laroque C and Klaas A (eds). Simulation in Produktion und Logistik – Entscheidungsunterstützung von der Planung bis zur Steuerung (Tagungsband 15. ASIM Fachtagung) 2013. HNI-Verlagsschriftenreihe: Paderborn, pp 31–40.

    Google Scholar 

  • Kulus D, Wolff D, Ungerland S and Dreher S (2011). Energieverbrauchssimulation als Werkzeug der Digitalen Fabrik. Zeitschrift für wirtschaftlichen Fabrikbetrieb – ZWF 106 (2011/9): 585–589.

    Google Scholar 

  • Lorenz S, Hesse M and Fischer A (2012). Simulation and optimization of robot driven production systems for peak-load reduction. In: Laroque C, Himmelspach J, Pasupathy R, Rose O and Uhrmacher AM (eds). Proceedings of the 2012 Winter Simulation Conference, Berlin, WSC, pp 2875–2886.

  • Ōno T (2007). Toyota Production System: Beyond Large-Scale Production. Productivity Press: New York.

    Google Scholar 

  • Rager M (2006). Energieorientierte Produktionsplanung. PhD thesis, Gabler Edition Wissenschaft, University Augsburg, Wiesbaden.

  • Schulz S and Jungnickel F (2012). A general approach to simulating energy flow in production plants via plant simulation. In: Seliger G and Kılıç SE (eds). Proceedings of the 10th Global Conference on Sustainable Manufacturing (GCSM), Istanbul, pp 724–729.

  • Solding P and Petku D (2005). Applying energy aspects on simulation of energy intensive production systems. In: Kuhl M E, Steiger N M, Armstrong FB and Joines JA (eds). Proceedings of the 2005 Winter Simulation Conference, pp 1428–1432.

  • Stahl B et al (2013). Combined energy, material and building simulation for green factory planning. In: Nee AYC, Song B and Ong S-K (eds). Re-Engineering Manufacturing for Sustainability. Springer Science+Business Media: Singapore, pp 493–498.

    Chapter  Google Scholar 

  • Stoldt J, Schlegel A, Langer T, Franz E and Putz M (2013). Generic energy-enhancement module for consumption analysis of manufacturing processes in discrete event simulation. In: Nee AYC, Song B and Ong S-K (eds). Re-Engineering Manufacturing for Sustainability. Springer Science+Business Media: Singapore, pp 165–170.

    Chapter  Google Scholar 

  • Thiede S (2012). Energy Efficiency in Manufacturing Systems. Springer-Verlag: Berlin, Heidelberg.

    Book  Google Scholar 

  • Weinert N (2010). Vorgehensweise für Planung und Betrieb energieeffizienter Produktionssysteme. PhD Thesis, Technische Universität, Berlin.

  • Wenzel K, Riegel J, Schlegel A and Putz M (2011). Semantic web based dynamic energy analysis and forecasts in manufacturing engineering. In: Hesselbach J and Herrmann C (eds). Globalized Solutions for Sustainability in Manufacturing. Springer-Verlag: Berlin, Heidelberg, pp 507–512.

    Chapter  Google Scholar 

  • Wenzel S, Junge M, Pöge C and Spieckermann S (2013). Energieeffizienz in der Automobilindustrie. Productivity Management 18 (2013): 21–24.

    Google Scholar 

Download references

Acknowledgements

Note—This paper is a revised and expanded version of a paper entitled Erweiterte Integration energetischer Betrachtungen in der Materialflusssimulation presented at 15th ASIM Dedicated Conference Simulation in Production and Logistics, Paderborn, Germany, 9–11 October 2013.

The presented work summarises outcomes of the research projects InnoCaT® and eniPROD®. The pre-competetive joint research project ‘Innovation Alliance Green Carbody Technologies’ (InnoCaT®) is funded by the ‘Bundesministerium für Bildung und Forschung (BMBF)’ (funding mark 02PO2700 ff) and supervised by ‘Projektträger Karlsruhe (PTKA)’. The authors are responsible for the content of the publication. The Cluster of Excellence ‘Energy-Efficient Product and Process Innovation in Production Engineering’ (eniPROD®) is funded by the European Union (European Regional Development Fund) and the Free State of Saxony.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Stoldt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stoldt, J., Schlegel, A. & Putz, M. Enhanced integration of energy-related considerations in discrete event simulation for manufacturing applications. J Simulation 10, 113–122 (2016). https://doi.org/10.1057/jos.2015.24

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1057/jos.2015.24

Keywords

Navigation