Skip to main content
  • 254 Accesses

Abstract

What does this title mean?1 Gödel’s incompleteness theorem, as he originally presented it, seems to be an extraordinary and tricky magical construction. We can now, with modern recursion theory or computability theory,2 reduce the problem to the unsolvability of the halting problem, or the theorem that there is a recursively enumerable set that is not recursive (computably enumerable set that is not computable) — though that is not the way Gödel presented it himself. A friend of mine of the highest distinction in this very field of recursion (computability) theory once said to me in informal conversation that all of us know how the original Gödel statement was constructed, but no one really understands what it says. It is just an artificial product and has no intuitive content.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Cobham, A. (1960) Effectively Decidable Theories. In Summaries of Talks Presented at the Summer Institute of Symbolic Logic, Cornell University, 1957, 2nd edn, Princeton, Institute for Defense Analyses, 391–5.

    Google Scholar 

  • Feferman, S., Dawson, J.W., Jr., Kleene, S.C., Moore, G., Solovay R., Jean van Heijenoort, J. (eds) (1986) Gödel: Collected Works, Vol. I. Oxford: The Clarendon Press.

    Google Scholar 

  • Frege, G. (1902) Letter to Frege. In van Heijenoort (1967), 127–8.

    Google Scholar 

  • Gödel, K. (1931)Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme, I. Monatshefte für Mathematik und Physik, 38: 173–98; translated as ‘On Formally Undecidable Propositions’ in Feferman et al. (1986).

    Article  Google Scholar 

  • Gödel, K. (1947) What is Cantor’s Continuum Problem? The American Mathematical Monthly, 54: 515–25; reprinted in Feferman et al. (1986).

    Article  Google Scholar 

  • Hausdorff, F. (1914) Grundzüge der Mengenlehre. Leipzig: Von Veit.

    Google Scholar 

  • Hausdorff, F. (1957) Mengenlehre, 3rd edn; translated as Set Theory. New York: Chelsea Pub. Co..

    Google Scholar 

  • Kripke, S. (1975a) Three Lectures on Truth., unpublished manuscript.

    Google Scholar 

  • Kripke, S. (1975b) Outline of a Theory of Truth. Journal of Philosophy 72: 690–713; reprinted in Kripke (2011).

    Article  Google Scholar 

  • Kripke, S. (2011) Philosophical Troubles: Collected Papers, Volume 1. New York: Oxford University Press.

    Book  Google Scholar 

  • Moore, G. and Garciadiego, D. (1981) The Burali-Forti Paradox: A Reappraisal of its Origins. Historia Mathematica, 8: 319–50.

    Article  Google Scholar 

  • Poincaré, Henri (1912) The Latest Efforts of the Logisticians. The Monist, 22: 524–39.

    Google Scholar 

  • Quine, W.V.O. (1940) Mathematical Logic. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Quine, W.V.O. (1962) The Ways of Paradox. Scientific American, 206: 84–96; reprinted in Quine (1966).

    Article  Google Scholar 

  • Quine, W.V.O. (1966) The Ways of Paradox and Other Essays. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Russell, B. (1905) ‘On Denoting’ Mind, 14: 479–93.

    Article  Google Scholar 

  • Russell, B. (1967 [1902]) Letter to Frege. In van Heijenoort (1967), 124–5.

    Google Scholar 

  • Smullyan, R. (1961) Theory of Formal Systems. Princeton, NJ: Annals of Mathematics Studies, Princeton University Press.

    Google Scholar 

  • Smullyan, R. (1992) Güdel’s Incompleteness Theorems. New York: Oxford University Press.

    Google Scholar 

  • Tarski, A. (1935) Der Wahrheitsbegriff in den formalisierten Sprachen. Stadia Philosophica, 1: 261–405; translated as ‘The Concept of Truth in Formalized Languages’ by J.H. Woodger in Tarski (1983), 152–278.

    Google Scholar 

  • Tarski, A. (1944) The Semantic Conception of Truth and the Foundations of Semantics. Philosophy and Phenomenological Research, 4: 341–76.

    Article  Google Scholar 

  • Tarski, A., Mostowski, A., and Robinson, R. M. (1953) Undecidable Theories, Amsterdam: North-Holland Publishing Company.

    Google Scholar 

  • Tarski, A. (1983) Logic, Semantics, Metamathematics, 2nd edn, ed. by J. Corcoran. Indianapolis: Hackett.

    Google Scholar 

  • van Heijenoort, J. (1967) From Frege to Gödel: A Source Book in Mathematical Logic, 1879–1931. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Wang, H. (1987) Reflections on Kurt Gödel. Cambridge, MA: MIT Press.

    Google Scholar 

  • Whitehead, A. N. and Russell, B. (1910, 1912, 1913). Principia Mathematica, 3 vols. Cambridge: Cambridge University Press; 2nd edn, 1925 (vol. 1), 1927 (vols. 2, 3).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 2014 Saul A. Kripke

About this chapter

Cite this chapter

Kripke, S.A. (2014). The Road to Gödel. In: Berg, J. (eds) Naming, Necessity, and More. Palgrave Macmillan, London. https://doi.org/10.1057/9781137400932_11

Download citation

Publish with us

Policies and ethics