Skip to main content
  • 230 Accesses

Abstract

Geometry was always an essential part of mathematics. In the classical conception, arithmetic and geometry were the main divisions of mathematics, and both were equally taken to be bodies of necessary truths about reality. It was thought that space – the real space we live in – is evidently and necessarily exactly as described by Euclid’s axioms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes and Bibliography

  1. J. Franklin, Achievements and fallacies in Hume’s account of infinite divisibility, Hume Studies 20 (1994), 85–101.

    Google Scholar 

  2. G.J. Whitrow, Why physical space has three dimensions, British Journal for the Philosophy of Science 6 (1955), 13–31.

    Article  Google Scholar 

  3. C.G. Hempel, Geometry and empirical science, American Mathematical Monthly 52 (1945), 7–17.

    Article  Google Scholar 

  4. B. Riemann, Über die Hypothesen welche der Geometrie zu gründe liegen (1854), Abhandlungen der Königlichen Gesellschaft der Wissenschaften zu Göttingen 13 (1867), 133–152.

    Google Scholar 

  5. B. Russell, The Principles of Mathematics (Cambridge University Press, Cambridge, 1903).

    Google Scholar 

  6. D.P. Lang, Aquinas and Suarez on the essence of continuous physical quantity, Laval théologique etphilosophique 58 (3) (2002), 565–595.

    Article  Google Scholar 

  7. A.R. Pears, Dimension Theory of Abstract Spaces (Cambridge University Press, Cambridge, 1975).

    Google Scholar 

  8. G. Belot, Geometric Possibility (Oxford University Press, Oxford, 2011), 8–9.

    Book  Google Scholar 

  9. V. Pambuccian, The axiomatics of ordered geometry: I. Ordered incidence spaces, Expositiones Mathematicae 29 (2011), 24–66.

    Article  Google Scholar 

  10. M.J. White, On continuity: Aristotle versus topology? History and Philosophy of Logic 9 (1988), 1–12.

    Article  Google Scholar 

  11. D. Hilbert, The Foundations of Geometry (2nd edn, Open Court, Chicago, 1980).

    Google Scholar 

  12. K. Stromberg, The Banach-Tarski paradox, American Mathematical Monthly 86 (1979), 151–161.

    Article  Google Scholar 

  13. P. Forrest, Grit or gunk: implications of the Banach-Tarski Paradox, Monist 87 (2004), 351–370.

    Article  Google Scholar 

  14. F. Arntzenius, Gunk, topology and measure, in D. Zimmerman, ed., Oxford Studies in Metaphysics, vol. 4, (Oxford University Press, Oxford, 2008).

    Google Scholar 

  15. P. Roeper, Region-based topology, Journal of Philosophical Logic, 26 (1997), 25–309.

    Article  Google Scholar 

  16. I. Kramosil and J. Michálek, Fuzzy metrics and statistical metric spaces, Kybernetika 11 (1975), 336–344.

    Google Scholar 

  17. W.H. Newton-Smith, The Structure of Time (Routledge & Kegan Paul, 1980).

    Google Scholar 

  18. D.R. Hilbert, Color and Color Perception: A Study in Anthropocentric Realism (CSLI, Stanford, 1987).

    Google Scholar 

  19. J. Cohen, On the structural properties of the colours, Australasian Journal of Philosophy 81 (2003), 78–95.

    Article  Google Scholar 

  20. R. Jagnow, Shadow-experiences and the phenomenal structure of colors, Dialectica 64 (2010), 187–212.

    Article  Google Scholar 

  21. B. Maund, Colours: Their Nature and Representation (Cambridge University Press, Cambridge, 1995).

    Google Scholar 

  22. J. Bigelow, B. Ellis and R. Pargetter, Forces, Philosophy of Science 55 (1988), 614–630.

    Article  Google Scholar 

  23. C.J. Isham, Modern Differential Geometry for Physicists (2nd edn, World Scientific, Singapore, 1999).

    Book  Google Scholar 

  24. T. Maudlin, The Metaphysics Within Physics (Oxford University Press, 2007).

    Book  Google Scholar 

  25. A.V. Evako, Dimension on discrete spaces, International Journal of Theoretical Physics 33 (1994), 1553–1568.

    Article  Google Scholar 

  26. G. Nerlich, The Shape of Space (2nd edn, Cambridge University Press, Cambridge, 1994), 10.

    Book  Google Scholar 

  27. G. Nerlich, Incongruent counterparts and the reality of space, Philosophy Compass 4 (2009), 598–613.

    Article  Google Scholar 

  28. G. Nerlich, What can geometry explain? British Journal for the Philosophy of Science 30 (1979), 69–83.

    Article  Google Scholar 

  29. G. Belot, Geometric Possibility (Oxford University Press, Oxford, 2010), 39–40.

    Google Scholar 

  30. E. Grant, Much Ado About Nothing: Theories of Space and Vacuum from the Middle Ages to the Scientific Revolution (Cambridge University Press, Cambridge, 1981).

    Book  Google Scholar 

  31. J.D. Anderson and E.L. Lau, Measurements of space curvature by solar mass, in I. Ciufolini and R.A. Matzner, eds, General Relativity and John Archibald Wheeler, Astrophysics and Space Science Library 367 (2010), 95–108.

    Chapter  Google Scholar 

  32. L. Smolin, Atoms of space and time, Scientific American 290 (1) (January 2004), 66–75.

    Article  Google Scholar 

  33. M. Kline, Mathematics: The Loss of Certainty (Oxford University Press, New York, 1980).

    Google Scholar 

  34. B. Russell, A turning point in my life, in L. Russell, ed., The Saturday Book (vol. 8, Hutchinson, London, 1948), 142–146.

    Google Scholar 

  35. P. Ernest, Social Constructivism as a Philosophy of Mathematics (SUNY Press, Albany, NY, 1998), 26.

    Google Scholar 

  36. J. Gray, Gauss and non- Euclidean geometry, Mathematics and Its Applications 581 (2006), 61–80.

    Article  Google Scholar 

  37. M.J. Greenberg, Euclidean and Non-Euclidean Geometries: Development and History (4th edn, Freeman, New York, 2007).

    Google Scholar 

  38. D.E. Smith, A Source Book in Mathematics (Dover, New York, 1959), II, 552.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Copyright information

© 2014 James Franklin

About this chapter

Cite this chapter

Franklin, J. (2014). Geometry: Mathematics or Empirical Science?. In: An Aristotelian Realist Philosophy of Mathematics. Palgrave Macmillan, London. https://doi.org/10.1057/9781137400734_10

Download citation

Publish with us

Policies and ethics