Skip to main content

Quantum Cognition, Neural Oscillators, and Negative Probabilities

  • Chapter
  • First Online:
The Palgrave Handbook of Quantum Models in Social Science

Abstract

This review paper has three main goals. First, to discuss a contextual neurophysiologically plausible model of neural oscillators that reproduces some of the features of quantum cognition. Second, to show that such a model predicts contextual situations where quantum cognition is inadequate. Third, to present an extended probability theory that not only can describe situations that are beyond quantum probability, but also provides an advantage in terms of contextual decision-making.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramsky, S., & Brandenburger, A. (2011). The sheaf-theoretic structure of non-locality and contextuality. New Journal of Physics, 13(11), 113036.

    Article  Google Scholar 

  • Abramsky, S., & Brandenburger, A. (2014). An operational interpretation of negative probabilities and no-signalling models. In F. van Breugel, E. Kashefi, C. Palamidessi, & J. Rutten (Eds.), Horizons of the mind. A tribute to Prakash Panangaden. Lecture notes in computer science (Vol. 8464, pp. 59–75). Berlin: Springer International Publisher.

    Google Scholar 

  • Aerts, D. (2009). Quantum structure in cognition. Journal of Mathematical Psychology, 53(5), 314–348.

    Article  Google Scholar 

  • Aerts, D., Broekaert, J., Gabora, L., & Veloz, T. (2012). The guppy effect as interference. In J. R. Busemeyer, F. Dubois, A. Lambert-Mogiliansky, & M. Melucci (Eds.), Quantum interaction. Lecture notes in computer science (Vol. 7620, pp. 36–47). Berlin, Heidelberg: Springer.

    Google Scholar 

  • Aerts, D., & Sozzo, S. (2014). Quantum entanglement in concept combinations. International Journal of Theoretical Physics, 53(10), 3587–3603.

    Article  Google Scholar 

  • Al-Safi, S. W., & Short, A. J. (2013). Simulating all nonsignaling correlations via classical or quantum theory with negative probabilities. Physical Review Letters, 111(17), 170403.

    Article  Google Scholar 

  • Anand, P., Pattanaik, P., & Puppe, C. (Eds.). (2009). The handbook of rational and social choice: An overview of new foundations and applications. Oxford, England: Oxford University Press.

    Google Scholar 

  • Ashtiani, M., & Azgomi, M. A. (2015). A survey of quantum-like approaches to decision making and cognition. Mathematical Social Sciences, 75, 49–80.

    Article  Google Scholar 

  • Aspect, A., Dalibard, J., & Roger, G. (1982). Experimental test of bell’s inequalities using time-varying analyzers. Physical Review Letters, 49(25), 1804–1807.

    Article  Google Scholar 

  • Aspect, A., Grangier, P., & Roger, G. (1981). Experimental tests of realistic local theories via bell’s theorem. Physical Review Letters, 47(7), 460–463.

    Article  Google Scholar 

  • Atmanspacher, H., & Römer, H. (2012). Order effects in sequential measurements of non-commuting psychological observables. Journal of Mathematical Psychology, 56(4), 274–280.

    Article  Google Scholar 

  • Bell, J. S. (1964). On the Einstein-Podolsky-Rosen paradox. Physics, 1(3), 195–200.

    Google Scholar 

  • Bell, J. S. (1966). On the problem of hidden variables in quantum mechanics. Reviews of Modern Physics, 38(3), 447–452.

    Article  Google Scholar 

  • Bell, J. S. (2004). Speakable and unspeakable in quantum mechanics: Collected papers on quantum philosophy. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Boole, G. (1854). An investigation of the laws of thought: On which are founded the mathematical theories of logic and probabilities. New York: Dover Publications.

    Google Scholar 

  • Briggs, R. (2015). Normative theories of rational choice: Expected utility. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Winter 2015 edition). http://plato.stanford.edu/archives/win2015/entries/rationality-normative-utility/.

  • Busemeyer, J. R., & Bruza, P. D. (2012). Quantum models of cognition and decision. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Busemeyer, J. R., & Diederich, A. (2010). Cognitive modeling. Thousand Oaks: SAGE.

    Google Scholar 

  • Busemeyer, J. R., Pothos, E. M., Franco, R., & Trueblood, J. S. (2011). A quantum theoretical explanation for probability judgment errors. Psychological Review, 118(2), 193–218.

    Article  Google Scholar 

  • Busemeyer, J. R., Wang, Z., Khrennikov, A., & Basieva, I. (2014). Applying quantum principles to psychology. Physica Scripta, 2014(T163), 014007.

    Article  Google Scholar 

  • Busemeyer, J. R., Wang, Z., & Townsend, J. T. (2006). Quantum dynamics of human decision-making. Journal of Mathematical Psychology, 50(3), 220–241.

    Article  Google Scholar 

  • Cabello, A. (2011). Quantum physics: Correlations without parts. Nature, 474(7352), 456–458.

    Article  Google Scholar 

  • Cabello, A. (2013). Simple explanation of the quantum violation of a fundamental inequality. Physical Review Letters, 110(6), 060402.

    Article  Google Scholar 

  • Cabello, A. (2014). The exclusivity principle singles out the quantum violation of the bell inequality. arXiv:1406.5656 [quant-ph]. arXiv: 1406.5656.

    Google Scholar 

  • Clauser, J. F., Horne, M. A., Shimony, A., & Holt, R. A. (1969). Proposed experiment to test local hidden-variable theories. Physical Review Letters, 23(15), 880–884.

    Article  Google Scholar 

  • Collins, A. M., & Loftus, E. F. (1975). A spreading-activation theory of semantic processing. Psychological Review, 82(6), 407–428.

    Article  Google Scholar 

  • Cox, R. T. (1961). The algebra of probable inference. Baltimore: The John Hopkins Press.

    Google Scholar 

  • de Barros, J. A. (2012). Joint probabilities and quantum cognition. In A. Khrennikov, A. L Migdall, S. Polyakov, & H. Atmanspacher (Eds.), AIP conference proceedings, Vaxjo, Sweden, December 2012 (Vol. 1508, pp. 98–107). American Institute of Physics.

    Google Scholar 

  • de Barros, J. A. (2012). Quantum-like model of behavioral response computation using neural oscillators. Biosystems, 110(3), 171–182.

    Article  Google Scholar 

  • de Barros, J. A. (2014). Decision making for inconsistent expert judgments using negative probabilities. In Quantum interaction. Lecture notes in computer science (pp. 257–269). Berlin/Heidelberg: Springer.

    Google Scholar 

  • de Barros, J. A. (2015). Beyond the quantum formalism: Consequences of a neural-oscillator model to quantum cognition. In H. Liljenström (Ed.), Advances in cognitive neurodynamics (IV). Advances in cognitive neurodynamics (pp. 401–404). Netherlands: Springer.

    Google Scholar 

  • de Barros, J. A., Dzhafarov, E. N., Kujala, J. V., & Oas, G. (2015). Measuring observable quantum contextuality. In International symposium on quantum interaction (pp. 36–47). Dordrecht: Springer International Publishing.

    Google Scholar 

  • de Barros, J. A., & Oas, G. (2014). Response selection using neural phase oscillators. In C. E. Crangle, A. G. de la Sienra, & H. E. Logino (Eds.), Foundations and methods from mathematics to neuroscience: Essays inspired by Patrick Suppes. Stanford, CA: CSLI Publications, Stanford University.

    Google Scholar 

  • de Barros, J. A., & Oas, G. (2014). Negative probabilities and counter-factual reasoning in quantum cognition. Physica Scripta, T163, 014008.

    Article  Google Scholar 

  • de Barros, J. A., Oas, G., & Suppes, P. (2015). Negative probabilities and counterfactual reasoning on the double-slit experiment. In J.-Y. Beziau, D. Krause, & J. B. Arenhart (Eds.), Conceptual clarification: Tributes to Patrick Suppes (1992–2014). London: College Publications.

    Google Scholar 

  • de Barros, J. A., & Suppes, P. (2009). Quantum mechanics, interference, and the brain. Journal of Mathematical Psychology, 53(5), 306–313.

    Article  Google Scholar 

  • De Morgan, A. (1910). On the study and difficulties of mathematics. La Salle: Open Court Publishing Company.

    Google Scholar 

  • Dieks, D. (1982). Communication by EPR devices. Physics Letters A, 92(6), 271–272.

    Article  Google Scholar 

  • Dirac, P. A. M. (1942). Bakerian lecture. The physical interpretation of quantum mechanics. Proceedings of the Royal Society of London B, A180, 1–40.

    Google Scholar 

  • Dzhafarov, E. N., & Kujala, J. N. (2014). A qualified Kolmogorovian account of probabilistic contextuality. In Quantum interaction. Lecture notes in computer science (Vol. 8369, pp. 201–212).

    Google Scholar 

  • Dzhafarov, E. N., & Kujala, J. V. (2013). All-possible-couplings approach to measuring probabilistic context. PLoS ONE, 8(5), e61712.

    Article  Google Scholar 

  • Dzhafarov, E. N., & Kujala, J. V. (2014). Contextuality in generalized Klyachko-type, bell-type, and Leggett-Garg-type systems. arXiv:1411.2244 [physics, physics:quant-ph]. arXiv: 1411.2244.

    Google Scholar 

  • Dzhafarov, E. N., & Kujala, J. V. (2014). Contextuality is about identity of random variables. Physica Scripta, 2014(T163), 014009.

    Article  Google Scholar 

  • Dzhafarov, E. N., & Kujala, J. V. (2015). Random variables recorded under mutually exclusive conditions: Contextuality-by-default. In Advances in cognitive neurodynamics (IV) (pp. 405–409). The Netherlands: Springer.

    Google Scholar 

  • Dzhafarov, E. N., Kujala, J. V., & Larsson, J. Å. (2015). Contextuality in three types of quantum-mechanical systems. Foundations of Physics, 45(7), 762–782.

    Article  Google Scholar 

  • Einstein, A., Podolsky, B., & Rosen, N. (1935). Can quantum-mechanical description of physical reality be considered complete? Physical Review, 47(10), 777–780.

    Article  Google Scholar 

  • Feynman, R. P. (1987). Negative probability. In B. J. Hiley & F. D. Peat (Eds.), Quantum implications: Essays in honour of David Bohm (pp. 235–248). London and New York: Routledge.

    Google Scholar 

  • Feynman, R. P., Leighton, R. B., & Sands, M. L. (2011). The Feynman lectures on physics: Mainly mechanics, radiation, and heat (Vol. 3). New York, NY: Basic Books.

    Google Scholar 

  • Fine, A. (1982). Hidden variables, joint probability, and the bell inequalities. Physical Review Letters, 48(5), 291–295.

    Article  Google Scholar 

  • Fine, A. (1982). Some local models for correlation experiments. Synthese, 50(2), 279–294.

    Article  Google Scholar 

  • Fine, A. (2009). The shaky game. Chicaco: University of Chicago Press.

    Google Scholar 

  • Galavotti, M. C. (2005). Philosophical introduction to probability. CSLI lecture notes (Vol. 167). Stanford, CA: CSLI Publications.

    Google Scholar 

  • Gühne, O., Budroni, C., Cabello, A., Kleinmann, M., & Larsson, J.-Å. (2014). Bounding the quantum dimension with contextuality. Physical Review A, 89(6), 062107.

    Article  Google Scholar 

  • Halliwell, J. J., & Yearsley, J. M. (2013). Negative probabilities, fine’s theorem, and linear positivity. Physical Review A, 87(2), 022114.

    Article  Google Scholar 

  • Haven, E., & Khrennikov, A. (2013). Quantum social science. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Haven, E., & Khrennikov, A. (2015). A brief introduction to quantum formalism. In E. Haven & A. Khrennikov (Eds.), The Palgrave handbook of quantum models in social science: Applications and grand challenges. New York: Palgrave MacMillan.

    Google Scholar 

  • Holik, F., Saenz, M., & Plastino, A. (2014). A discussion on the origin of quantum probabilities. Annals of Physics, 340(1), 293–310.

    Article  Google Scholar 

  • Izhikevich, E. M. (2007). Dynamical systems in neuroscience: The geometry of excitability and bursting. Cambridge, MA: The MIT Press.

    Google Scholar 

  • Jaynes, E. T. (2003). Probability theory: The logic of science. Cambridge, Great Britain: Cambridge University Press.

    Book  Google Scholar 

  • Jeffrey, R. (1992). Probability and the art of judgment. Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  • Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica: Journal of the Econometric Society, 47(2), 263–291.

    Article  Google Scholar 

  • Khrennikov, A. (1993). p-Adic probability theory and its applications. {T}he principle of statistical stabilization of frequencies. Theoretical and Mathematical Physics, 97(3), 1340–1348.

    Article  Google Scholar 

  • Khrennikov, A. (1993). p-Adic statistical models. Doklady Akademii Nauk, 330(3), 300–304.

    Google Scholar 

  • Khrennikov, A. Y. (1993). Statistical interpretation of p-adic valued quantum field theory. Doklady Akademii Nauk-Rossijskaya Akademiya Nauk, 328(1), 46–49.

    Google Scholar 

  • Khrennikov, A. (1994). Discrete Qp-valued probabilities. Russian Academy of Sciences-Doklady Mathematics-AMS Translation, 48(3), 485–490.

    Google Scholar 

  • Khrennikov, A. (1994). p-Adic valued distributions in mathematical physics. Mathematics and its applications (Vol. 309). Dordrecht, Holland: Springer Science+Business Media.

    Google Scholar 

  • Khrennikov, A. (2009). Interpretations of probability. Berlin: Walter de Gruyter.

    Book  Google Scholar 

  • Khrennikov, A. (2010). Ubiquitous quantum structure. Heidelberg: Springer.

    Book  Google Scholar 

  • Khrennikov, A., Basieva, I., Dzhafarov, E. N., & Busemeyer, J. R. (2014). Quantum models for psychological measurements: An unsolved problem. PLoS ONE, 9(10), e110909.

    Article  Google Scholar 

  • Kochen, S., & Specker, E. P. (1967). The problem of hidden variables in quantum mechanics. Journal of Mathematics and Mechanics, 17, 59–87.

    Google Scholar 

  • Kochen, S., & Specker, E. P. (1975). The problem of hidden variables in quantum mechanics. In C. F. Hooker (Ed.), The logico-algebraic approach to quantum mechanics (pp. 293–328). Dordrecht, Holland: D. Reidel Publishing Co.

    Chapter  Google Scholar 

  • Kolmogorov, A. N. (1956). Foundations of the theory of probability (2nd ed.). Oxford, England: Chelsea Publishing Co.

    Google Scholar 

  • Kuramoto, Y. (1984). Chemical oscillations, waves, and turbulence. Mineola, NY: Dover Publications, Inc.

    Book  Google Scholar 

  • Loubenets, E. R. (2015). Context-invariant quasi hidden variable (qHV) modelling of all joint von Neumann measurements for an arbitrary hilbert space. Journal of Mathematical Physics, 56(3), 032201.

    Article  Google Scholar 

  • Mückenheim, G. (1986). A review of extended probabilities. Physics Reports, 133(6), 337–401.

    Article  Google Scholar 

  • Oas, G., Acacio de Barros, J., & Carvalhaes, C. (2014). Exploring non-signalling polytopes with negative probability. Physica Scripta, T163, 014034.

    Article  Google Scholar 

  • Pais, A. (1986). Inward bound: Of matter and forces in the physical world. Oxford, UK: Oxford University Press.

    Google Scholar 

  • Peres, A. (1995). Quantum theory: Concepts and methods. New York: Springer Science & Business Media.

    Google Scholar 

  • Pothos, E. M., & Busemeyer, J. R. (2009). A quantum probability explanation for violations of “rational” decision theory. Proceedings of the Royal Society B: Biological Sciences, 276(1665), 2171–2178.

    Article  Google Scholar 

  • Ruzsa, I. Z., & Székely, G. J. (1983). Convolution quotients of nonnegative functions. Monatshefte für Mathematik, 95(3), 235–239.

    Article  Google Scholar 

  • Savage, L. J. (1972). The foundations of statistics, 2nd ed. Mineola, NY: Dover Publications Inc.

    Google Scholar 

  • Shafir, E., & Tversky, A. (1992). Thinking through uncertainty: Nonconsequential reasoning and choice. Cognitive Psychology, 24(4), 449–474.

    Article  Google Scholar 

  • Suppes, P. (2002). Representation and invariance of scientific structures. Stanford, CA: CSLI Publications.

    Google Scholar 

  • Suppes, P., & Atkinson, R. C. (1960). Markov learning models for multiperson interactions. Stanford, CA: Stanford University Press.

    Google Scholar 

  • Suppes, P., & de Barros, J. A. (1996). Photons, billiards and chaos. In P. Weingartner & G. Schurz (Eds.), Law and prediction in the light of chaos research (Vol. 473, pp. 189–201). Berlin, Heidelberg: Springer.

    Chapter  Google Scholar 

  • Suppes, P., de Barros, J. A., & Oas, G. (2012). Phase-oscillator computations as neural models of stimulus–response conditioning and response selection. Journal of Mathematical Psychology, 56(2), 95–117.

    Article  Google Scholar 

  • Suppes, P., & Zanotti, M. (1981). When are probabilistic explanations possible? Synthese, 48(2), 191–199.

    Article  Google Scholar 

  • Székely, G. J. (2005). Half of a coin: Negative probabilities. Wilmott Magazine, 50, 66–68.

    Google Scholar 

  • Trueblood, J. S., & Busemeyer, J. R. (2011). A quantum probability account of order effects in inference. Cognitive Science, 35(8), 1518–1552.

    Article  Google Scholar 

  • Tversky, A., & Shafir, E. (1992). The disjunction effect in choice under uncertainty. Psychological Science, 3(5), 305–309.

    Article  Google Scholar 

  • Wang, Z., & Busemeyer, J. R. (2013). A quantum question order model supported by empirical tests of an a priori and precise prediction. Topics in Cognitive Science, 5(4), 689–710.

    Google Scholar 

  • Yang, D. (2006). A simple proof of monogamy of entanglement. Physics Letters A, 360(2), 249–250.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Acacio de Barros .

Editor information

Editors and Affiliations

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

de Barros, J.A., Oas, G. (2017). Quantum Cognition, Neural Oscillators, and Negative Probabilities. In: Haven, E., Khrennikov, A. (eds) The Palgrave Handbook of Quantum Models in Social Science. Palgrave Macmillan, London. https://doi.org/10.1057/978-1-137-49276-0_10

Download citation

  • DOI: https://doi.org/10.1057/978-1-137-49276-0_10

  • Published:

  • Publisher Name: Palgrave Macmillan, London

  • Print ISBN: 978-1-137-49275-3

  • Online ISBN: 978-1-137-49276-0

  • eBook Packages: Economics and FinanceEconomics and Finance (R0)

Publish with us

Policies and ethics