Skip to main content
Log in

Improving photosensitivity without changing thermal reactivity in photochromic diarylbenzenes based on accurate prediction by DFT calculations

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

1,2-Diarylbenzenes (DABs) have been developed as a new family of fast T-type photochromic switches. However, the molecular design strategy for DABs with desired optical and thermal properties is not established. In this work, we explored the best functional in quantum chemical calculations to predict the properties of DABs. Furthermore, we newly designed and synthesized DABs based on the calculation using the best functional, resulting in the improvement of the photosensitivity in the UV-A region (i.e. a shift of absorption to lower energies and an increase in the absorption coefficient) without changing the thermal back-reaction rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Inagaki, Y. Kobayashi, K. Mutoh and J. Abe, A simple and versatile strategy for rapid color fading and intense coloration of photochromic naphthopyran families, J. Am. Chem. Soc., 2017, 139, 13429–13441.

    CAS  PubMed  Google Scholar 

  2. Y. Kobayashi and J. Abe, Real-time dynamic hologram of a 3D object with fast photochromic molecules, Adv. Opt. Mater., 2016, 4, 1354–1357.

    CAS  Google Scholar 

  3. N. Ishii, T. Kato and J. Abe, A real-time dynamic holographic material using a fast photochromic molecule, Sci. Rep., 2012, 2, 819.

    PubMed  PubMed Central  Google Scholar 

  4. J. Cusido, S. S. Ragab, E. R. Thapaliya, S. Swaminathan, J. Garcia-Amorós, M. J. Roberti, B. Araoz, M. M. A. Mazza, S. Yamazaki, A. M. Scott, F. M. Raymo and M. L. Bossi, A photochromic bioconjugate with photoactivatable fluorescence for superresolution imaging, J. Phys. Chem. C, 2016, 120, 12860–12870.

    CAS  Google Scholar 

  5. E. Deniz, M. Tomasulo, J. Cusido, I. Yildiz, M. Petriella, M. L. Bossi, S. Sortino and F. M. Raymo, Photoactivatable fluorophores for super-resolution imaging based on oxazine auxochromes, J. Phys. Chem. C, 2012, 116, 6058–6068.

    CAS  Google Scholar 

  6. F. Tong, M. P. Hanson and C. J. Bardeen, Analysis of reaction kinetics in the photomechanical molecular crystal 9-methylanthracene using an extended Finke-Watzky model, Phys. Chem. Chem. Phys., 2016, 18, 31936–31945.

    CAS  PubMed  Google Scholar 

  7. L. Zhu, F. Tong, C. Salinas, M. K. Al-Muhanna, F. S. Tham, D. Kisailus, R. O. Al-Kaysi and C. J. Bardeen, Improved solid-state photomechanical materials by fluorine substitution of 9-anthracene carboxylic acid, Chem. Mater., 2014, 26, 6007–6015.

    CAS  Google Scholar 

  8. M. Tomasulo, S. Sortino, A. J. P. White and F. M. Raymo, Fast and stable photochromic oxazines, J. Org. Chem., 2005, 70, 8180–8189.

    CAS  PubMed  Google Scholar 

  9. M. Tomasulo, S. Sortino and F. M. Raymo, A fast and stable photochromic switch based on the opening and closing of an oxazine ring, Org. Lett., 2005, 7, 1109–1112.

    CAS  PubMed  Google Scholar 

  10. M. Tomasulo, S. Sortino and F. M. Raymo, Amplification of the coloration efficiency of photochromic oxazines, Adv. Mater., 2008, 20, 832–835.

    CAS  Google Scholar 

  11. Y. Zhang, S. Tang, E. R. Thapaliya, L. Sansalone and F. M. Raymo, Fluorescence activation with switchable oxazines, Chem. Commun., 2018, 54, 8799–8809.

    CAS  Google Scholar 

  12. C. M. Sousa, J. Berthet, S. Delbaere, A. Polónia and P. J. Coelho, Fast color change with photochromic fused naphthopyrans, J. Org. Chem., 2015, 80, 12177–12181.

    CAS  PubMed  Google Scholar 

  13. K. Fujita, S. Hatano, D. Kato and J. Abe, Photochromism of a radical diffusion-inhibited hexaarylbiimidazole derivative with intense coloration and fast decoloration performance, Org. Lett., 2008, 10, 3105–3108.

    CAS  PubMed  Google Scholar 

  14. Y. Kishimoto and J. Abe, A fast photochromic molecule that colors only under UV light, J. Am. Chem. Soc., 2009, 131, 4227–4229.

    CAS  PubMed  Google Scholar 

  15. H. Yamashita, T. Ikezawa, Y. Kobayashi and J. Abe, Photochromic phenoxyl-imidazolyl radical complexes with decoloration rates from tens of nanoseconds to seconds, J. Am. Chem. Soc., 2015, 137, 4952–4955.

    CAS  PubMed  Google Scholar 

  16. T. Ikezawa, K. Mutoh, Y. Kobayashi and J. Abe, Thiophene-substituted phenoxyl-imidazolyl radical complexes with high photosensitivity, Chem. Commun., 2016, 52, 2465–2468.

    CAS  Google Scholar 

  17. M. Irie, T. Fukaminato, K. Matsuda and S. Kobatake, Photochromism of diarylethene molecules and crystals: memories, switches, and actuators, Chem. Rev., 2014, 114, 12174–12277.

    CAS  PubMed  Google Scholar 

  18. K. Uchida, T. Matsuoka, K. Sayo, M. Iwamoto, S. Hayashi and M. Irie, Thermally reversible photochromic systems. photochromism of a dipyrrolylperfluorocyclopentene, Chem. Lett., 1999, 28, 835–836.

    Google Scholar 

  19. S. Kawai, T. Nakashima, K. Atsumi, T. Sakai, M. Harigai, Y. Imamoto, H. Kamikubo, M. Kataoka and T. Kawai, Novel photochromic molecules based on 4,5-dithienyl thiazole with fast thermal bleaching rate, Chem. Mater., 2007, 19, 3479–3483.

    CAS  Google Scholar 

  20. Y. H. Yang, Y. S. Xie, Q. Zhang, K. Nakatani, H. Tian and W. H. Zhu, Aromaticity-controlled thermal stability of photochromic systems based on a six-membered ring as ethene bridges: photochemical and kinetic studies, Chem.Eur. J., 2012, 18, 11685–11694.

    CAS  PubMed  Google Scholar 

  21. V. Z. Shirinian, A. G. Lvov, E. Y. Bulich, A. V. Zakharov and M. M. Krayushkin, Novel photochromic diarylethenes bearing an imidazole moiety, Tetrahedron Lett., 2015, 56, 5477–5481.

    CAS  Google Scholar 

  22. D. Kitagawa and S. Kobatake, Strategy for molecular design of photochromic diarylethenes having thermal functionality, Chem. Rec., 2016, 16, 2005–2015.

    CAS  PubMed  Google Scholar 

  23. K. Inaba, R. Iwai, M. Morimoto and M. Irie, Thermally reversible photochromism of dipyrrolylethenes, Photochem. Photobiol. Sci., 2019, 18, 2136–2141.

    CAS  PubMed  Google Scholar 

  24. Y. Sato, D. Kitagawa and S. Kobatake, Molecular design for a write-by-light/erase-by-heat recording system using photo-chromic diarylethenes with thermal cycloreversion, Tetrahedron, 2019, 75, 130487.

    CAS  Google Scholar 

  25. D. Kitagawa, T. Nakahama, Y. Nakai and S. Kobatake, 1,2-Diarylbenzene as fast T-type photochromic switch, J. Mater. Chem. C, 2019, 7, 2865–2870.

    CAS  Google Scholar 

  26. T. Nakahama, D. Kitagawa and S. Kobatake, Tuning of optical properties and thermal cycloreversion reactivity of photochromic diarylbenzene by introducing electrondonating substituents, J. Phys. Chem. C, 2019, 123, 31212–31218.

    CAS  Google Scholar 

  27. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09, Gaussian, Inc., Wallingford CT, 2009.

  28. A. D. Becke, Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys., 1993, 98, 5648–5652.

    CAS  Google Scholar 

  29. C. Lee, W. Yang and R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B: Condens. Matter, 1988, 37, 785–789.

    CAS  Google Scholar 

  30. J. P. Perdew and Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B: Condens. Matter, 1992, 45, 13244–13249.

    CAS  Google Scholar 

  31. A. D. Boese and J. M. Martin, Development of density functionals for thermochemical kinetics, J. Chem. Phys., 2004, 121, 3405–3416.

    CAS  PubMed  Google Scholar 

  32. Y. Zhao, N. E. Schultz and D. G. Truhlar, Exchange-correlation functional with broad accuracy for metallic and non-metallic compounds, kinetics, and noncovalent interactions, J. Chem. Phys., 2005, 123, 161103.

    PubMed  Google Scholar 

  33. Y. Zhao, N. E. Schultz and D. G. Truhlar, Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions, J. Chem. Theory Comput., 2006, 2, 364–382.

    PubMed  Google Scholar 

  34. Y. Zhao and D. G. Truhlar, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals, Theor. Chem. Acc., 2008, 120, 215–241.

    CAS  Google Scholar 

  35. J.-D. Chai and M. Head-Gordon, Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections, Phys. Chem. Chem. Phys., 2008, 10, 6615–6620.

    CAS  PubMed  Google Scholar 

  36. R. Ditchfield, W. J. Hehre and J. A. Pople, Self-consistent molecular-orbital methods. IX. An extended gaussian-type basis for molecular-orbital studies of organic molecules, J. Chem. Phys., 1971, 54, 724–728.

    CAS  Google Scholar 

  37. T. Yanai, D. P. Tew and N. C. Handy, A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP), Chem. Phys. Lett., 2004, 393, 51–57.

    CAS  Google Scholar 

  38. C. Adamo and V. Barone, Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: The mPW and mPW1PW models, J. Chem. Phys., 1998, 108, 664–675.

    CAS  Google Scholar 

  39. N. Brimhall, T. L. Andrew, R. V. Manthena and R. Menon, Breaking the far-field diffraction limit in optical nanopatterning via repeated photochemical and electrochemical transitions in photochromic molecules, Phys. Rev. Lett., 2011, 107, 205501.

    PubMed  Google Scholar 

  40. S. Kobatake and M. Irie, Synthesis and photochromism of diarylethenes with isopropyl groups at the reactive carbons and long and π-conjugated heteroaryl groups, Chem. Lett., 2003, 32, 1078–1079.

    CAS  Google Scholar 

  41. P. D. Patel and A. E. Masunov, Theoretical study of photo-chromic compounds: Part 3. Prediction of thermal stability, J. Phys. Chem. C, 2011, 115, 10292–10297.

    CAS  Google Scholar 

  42. X. Li, Q. Zou and H. Ågren, Photochromic diarylethenes with heterocyclic aromatic rings: Correlation between thermal bistability and geometrical characters of transition states, J. Phys. Chem. A, 2015, 119, 9140–9147.

    CAS  PubMed  Google Scholar 

  43. P. D. Patel and A. E. Masunov, Theoretical study of photochromic compounds. 1. Bond length alternation and absorption spectra for the open and closed forms of 29 diarylethene derivatives, J. Phys. Chem. A, 2009, 113, 8409–8414.

    CAS  PubMed  Google Scholar 

  44. R. Li, H. Arai, Y. Kobayashi, K. Mutoh and J. Abe, Molecular design to increase the photosensitivity of photo-chromic phenoxyl–imidazolyl radical complexes, Mater. Chem. Front., 2019, 3, 2380–2387.

    CAS  Google Scholar 

  45. G. Pariani, M. Quintavalla, L. Colella, L. Oggioni, R. Castagna, F. Ortica, C. Bertarelli and A. Bianco, New insight into the fatigue resistance of photochromic 1,2-diarylethenes, J. Phys. Chem. C, 2017, 121, 23592–23598.

    CAS  Google Scholar 

  46. A. Perrier, F. Maurel and D. Jacquemin, Interplay between electronic and steric effects in multiphotochromic diarylethenes, J. Phys. Chem. C, 2011, 115, 9193–9203.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daichi Kitagawa.

Additional information

Electronic supplementary information (ESI) available: Detailed experimental data (Fig. S1–S7 and Tables S1–S17). See DOI: 10.1039/d0pp00024h

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kitagawa, D., Takahashi, N., Nakahama, T. et al. Improving photosensitivity without changing thermal reactivity in photochromic diarylbenzenes based on accurate prediction by DFT calculations. Photochem Photobiol Sci 19, 644–653 (2020). https://doi.org/10.1039/d0pp00024h

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/d0pp00024h

Navigation