Skip to main content
Log in

Photodynamic action of Hypericum perforatum hydrophilic extract against Staphylococcus aureus

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Hypericin (Hyp) is one of the most effective, naturally occurring photodynamic agents, which proved effective against a wide array of microorganisms. One limitation of its large scale application as a disinfectant is the high production cost of the pure compound. The availability of photoactive materials at a lower cost may be highly beneficial to the actual implementation of photodisinfection also at the industrial level. In this work we report the use of a lyophilized extract from Hypericum perforatum as a photosensitizing material. We show that optical absorption in the green-red region of the visible spectrum of ethanol or DMSO solutions of the lyophilized extract contains bands arising from Hyp. When excited with light in the main Hyp absorption bands, fluorescence emission and triplet state formation occur as in pure Hyp solutions. We show that ethanol or DMSO solutions of the lyophilized extract from Hypericum perforatum are highly efficient photodynamic agents against Gram-positive Staphylococcus aureus, chosen as a model. The performance is indistinguishable from that of the pure compound. Using fluorescence microscopy, we demonstrate that upon incubation of S. aureus with lyophilized extract solutions, Hyp is found on the bacterial wall, as previously reported for the pure compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Kadariya, T. C. Smith and D. Thapaliya, BioMed Res. Int., 2014, 2014, 9.

    Google Scholar 

  2. F. D. Lowy, N. Engl. J. Med., 1998, 339, 520–532.

    CAS  PubMed  Google Scholar 

  3. Y. Ie Loir, F. Baron and M. Gautier, GMR, Genet. Mol. Res., 2003, 2, 63–76.

    PubMed  Google Scholar 

  4. P. Chaibenjawong and S. J. Foster, Arch. Microbiol., 2011, 193, 125–135.

    CAS  PubMed  Google Scholar 

  5. C. Cortimiglia, M. Luini, V. Bianchini, L. Marzagalli, F. Vezzoli, D. Avisani, M. Bertoletti, A. Ianzano, A. Franco and A. Battisti, Epidemiol. Infect., 2016, 144, 3046–3051.

    CAS  PubMed  Google Scholar 

  6. T. Ronco, I. C. Klaas, M. Stegger, L. Svennesen, L. B. Astrup, M. Farre and K. Pedersen, Vet. Microbiol., 2018, 215, 35–42.

    CAS  PubMed  Google Scholar 

  7. R. C. Neyra, J. A. Frisancho, J. L. Rinsky, C. Resnick, K. C. Carroll, A. M. Rule, T. Ross, Y. You, L. B. Price and E. K. Silbergeld, Environ. Health Perspect., 2014, 122, 471–477.

    PubMed  PubMed Central  Google Scholar 

  8. D. Sergelidis, T. Papadopoulos, D. Komodromos, E. Sergelidou, T. Lazou, M. Papagianni, A. Zdragas and A. Papa, Lett. Appl. Microbiol., 2015, 61, 498–503.

    CAS  PubMed  Google Scholar 

  9. A. Marek, E. Pyzik, D. Stępień-Pyśniak, R. Urban-Chmiel and L. S. Jarosz, Curr. Microbiol., 2018, 75, 1256–1266.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. D. Thomas, S. Chou, O. Dauwalder and G. Lina, Superantigens and Superallergens, 2007, 93, 24–41.

    CAS  Google Scholar 

  11. N. Balaban and A. Rasooly, Int. J. Food Microbiol., 2000, 61, 1–10.

    CAS  PubMed  Google Scholar 

  12. D.-L. Hu and A. Nakane, Eur. J. Pharmacol., 2014, 722, 95–107.

    CAS  PubMed  Google Scholar 

  13. G. K. Paterson, E. M. Harrison and M. A. Holmes, Trends Microbiol., 2014, 22, 42–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. W. A. McGuinness, N. Malachowa and F. R. DeLeo, Yale J. Biol. Med., 2017, 90, 269–281.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. M. Aires-de-Sousa, Clin. Microbiol. Infect., 2017, 23, 373–380.

    CAS  PubMed  Google Scholar 

  16. H. W. Boucher, G. H. Talbot, J. S. Bradley, J. E. Edwards, D. Gilbert, L. B. Rice, M. Scheld, B. Spellberg and J. Bartlett, Clin. Infect. Dis., 2009, 48, 1–12.

    PubMed  Google Scholar 

  17. M. Wainwright, T. Maisch, S. Nonell, K. Plaetzer, A. Almeida, G. P. Tegos and M. R. Hamblin, Lancet Infect. Dis., 2017, 17, e49–e55.

    PubMed  Google Scholar 

  18. A. Darmanyan, L. Burel, D. Eloy and P. Jardon, J. Chim. Phys., 1994, 91, 1774–1785.

    CAS  Google Scholar 

  19. M. Roslaniec, H. Weitman, D. Freeman, Y. Mazur and B. Ehrenberg, J. Photochem. Photobiol., B, 2000, 57, 149–158.

    CAS  Google Scholar 

  20. A. Losi, Photochem. Photobiol., 1997, 65, 791–801.

    CAS  Google Scholar 

  21. J. M. Jacobson, L. Feinman, L. Liebes, N. Ostrow, V. Koslowski, A. Tobia, B. E. Cabana, D. H. Lee, J. Spritzler and A. M. Prince, Antimicrob. Agents Chemother., 2001, 45, 517–524.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. A. Kubin, F. Wierrani, U. Burner, G. Alth and W. Grünberger, Curr. Pharm. Des., 2005, 11, 233–253.

    CAS  PubMed  Google Scholar 

  23. K. Kairyte, S. Lapinskas, V. Gudelis and Z. Luksiene, J. Appl. Microbiol., 2012, 112, 1144–1151.

    CAS  PubMed  Google Scholar 

  24. C. M. N. Yow, H. M. Tang, E. S. M. Chu and Z. Huang, Photochem. Photobiol., 2012, 88, 626–632.

    CAS  PubMed  Google Scholar 

  25. N. Nafee, A. Youssef, H. El-Gowelli, H. Asem and S. Kandil, Int. J. Pharm., 2013, 454, 249–258.

    CAS  PubMed  Google Scholar 

  26. J. Comas-Barceló, B. Rodríguez-Amigo, S. Abbruzzetti, P. d. Rey-Puech, M. Agut, S. Nonell and C. Viappiani, RSC Adv., 2013, 3, 17874–17879.

    Google Scholar 

  27. B. Rodríguez-Amigo, P. Delcanale, G. Rotger, J. Juárez Jiménez, S. Abbruzzetti, A. Summer, M. Agut, F. J. Luque S. Nonell and C. Viappiani, J. Dairy Scl., 2015, 98, 89–94.

    Google Scholar 

  28. P. Delcanale, F. Pennacchietti, G. Maestrini, B. Rodríguez-Amigo, P. Bianchini, A. Diaspro, A. Iagatti, B. Patrizi, P. Foggi, M. Agut, S. Nonell, S. Abbruzzetti and C. Viappiani, Sci. Rep., 2015, 5, 15564.

  29. P. Delcanale, B. Rodríguez-Amigo, J. Juárez-Jiménez, J. Luque, S. Abbruzzetti, M. Agut, S. Nonell and C. Viappiani, J. Mater. Chem. B, 2017, 5, 1633–1641.

    CAS  PubMed  Google Scholar 

  30. D. Pezzuoli, M. Cozzolino, C. Montali, L. Brancaleon, P. Bianchini, M. Zantedeschi, S. Bonardi, C. Viappiani and S. Abbruzzetti, Food Control, 2018, 94, 254–262.

    CAS  Google Scholar 

  31. A. Rezusta, P. López-Chicón, M. P. Paz-Cristobal, M. Alemany-Ribes, D. Royo-Díez, M. Agut, C. Semino, S. Nonell, M. J. Revillo, C. Aspiroz and Y. Gilaberte, Photochem. Photobiol., 2012, 88, 613–619.

    CAS  PubMed  Google Scholar 

  32. P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson and J. Golab, CA-Cancer J. Clin., 2011, 61, 250–281.

    PubMed  PubMed Central  Google Scholar 

  33. P. Agostinis, A. Vantieghema, W. Merlevede and P. A. M. deWitte, Int. J. Biochem. Cell Biol., 2002, 34, 221–241.

    CAS  PubMed  Google Scholar 

  34. E. Buytaert, G. Callewaert, N. Hendrickx, L. Scorrano, D. Hartmann, L. Missiaen, J. R. Vandenheede, I. Heirman, J. Grooten and P. Agostinis, FASEB J., 2006, 20, 756–758.

    CAS  PubMed  Google Scholar 

  35. A. Garg, D. Krysko, P. Vandenabeele and P. Agostinis, Cancer Immunol. Immunother., 2012, 61, 215–221.

    CAS  PubMed  Google Scholar 

  36. A. Vantieghem, Z. Assefa, P. Vandenabeele, W. Declercq, S. Courtois, J. R. Vandenheede, W. Merlevede, P. de Witte and P. Agostinis, FEES Lett, 1998, 440, 19–24.

    CAS  Google Scholar 

  37. A. Karioti and A. R. Bilia, Int. J. Mol Sci., 2010, 11, 562–594.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. H. Brockmann, M. N. Haschad, K. Maier and F. Pohl, Naturwissenschaften, 1939, 32, 550–555.

    Google Scholar 

  39. N. Duràn and P. S. Song, Photochem. Photobiol., 1986, 43, 677–680.

    PubMed  Google Scholar 

  40. Z. Saddiqe, I. Naeem and A. Maimoona, J. Ethnopharmacol., 2010, 131, 511–521.

    CAS  PubMed  Google Scholar 

  41. C. M. Schempp, K. Pelz, A. Wittmer, E. Schöpf and J. C. Simon, Lancet, 1999, 353, 2129.

    CAS  PubMed  Google Scholar 

  42. S. S. Chatterjee, S. K. Bhattacharya, M. Wonnemann, A. Singer and W. E. Müller, Life Scl, 1998, 63, 499–510.

    CAS  Google Scholar 

  43. J. Greeson, B. Sanford and D. Monti, Psychopharmacology, 2001, 153, 402–414.

    CAS  PubMed  Google Scholar 

  44. H. Brockmann, F. Kluge and H. Muxfeldt, Chem. Ber., 1957, 90, 2302–2318.

    CAS  Google Scholar 

  45. H. Falk, J. Meyer and M. Oberreiter, Monatsh. Chem., 1993, 124, 339–341.

    CAS  Google Scholar 

  46. L.-F. Huang, Z.-H. Wang and S.-L. Chen, Chin. J. Nat. Medicines, 2014, 12, 81–88.

    CAS  Google Scholar 

  47. K. Aponiene, E. Paskeviciute, I. Reklaitis and Z. Luksiene, J. FoodEng., 2015, 144, 29–35.

    CAS  Google Scholar 

  48. Z. Luksiene and L. Brovko, Food Eng. Rev., 2013, 5, 185–199.

    CAS  Google Scholar 

  49. A. Nahrstedt and V. Butterweck, Pharmacopsychiatry, 1997, 30, 129–134.

    CAS  PubMed  Google Scholar 

  50. A. L. Vandenbogaerde, A. Kamuhabwa, E. Delaey, B. E. Himpens, W. J. Merlevede and P. A. de Witte, J. Photochem. Photobiol., B, 1998, 45, 87–94.

    CAS  Google Scholar 

  51. A. RossiFanelli, E. Antonini and A. Caputo, Biochim. Biophys. Acta, 1958, 30, 608–615.

    CAS  Google Scholar 

  52. S. Abbruzzetti, E. Crema, L. Masino, A. Vecli, C. Viappiani, J. R. Small, L. J. Libertini and E. W. Small, Biophys. J., 2000, 78, 405–415.

  53. S. Abbruzzetti, S. Bruno, S. Faggiano, E. Grandi, A. Mozzarelli and C. Viappiani, Photochem. Photobiol Scl, 2006, 5, 1109–1120.

    CAS  Google Scholar 

  54. T. N. Demidova and M. R. Hamblin, App.l Environ. Microbiol., 2005, 71, 6918–6925.

    CAS  Google Scholar 

  55. P. López-Chicón, M. P. Paz-Cristobal, A. Rezusta, C. Aspiroz, M. Royo-Canas, E. Andres-Ciriano, Y. Gilaberte, M. Agut and S. Nonell, Photochem. Photobiol Scl, 2012, 11, 1099–1107.

    Google Scholar 

  56. D. S. English, K. Das, J. M. Zenner, W. Zhang, G. A. Kraus, R. C. Larock and J. W. Petrich, J. Phys. Chem. A, 1997, 101, 3235–3240.

    CAS  Google Scholar 

  57. a. G. H. Krause and E. Weis, Annu. Rev. Plant Physiol. Plant Mol. Biol., 1991, 42, 313–349.

    CAS  Google Scholar 

  58. T. Yamazaki, N. Ohta, I. Yamazaki and P. S. Song, J. Phys. Chem., 1993, 97, 7870–7875.

    CAS  Google Scholar 

  59. P. Bianchini, M. Cozzolino, M. Oneto, L. Pesce, F. Pennacchietti, M. Tognolini, C. Giorgio, S. Nonell, L. Cavanna, P. Delcanale, S. Abbruzzetti, A. Diaspro and C. Viappiani, Biomacromolecules, 2019, 20, 2024–2033.

    CAS  PubMed  Google Scholar 

  60. L. A. Schmitt, Y. Liu, P. A. Murphy, J. W. Petrich, P. M. Dixon and D. F. Birt, J. Photochem. Photobiol., B, 2006, 85, 118–130.

    CAS  Google Scholar 

  61. C. Cecchini, A. CreSci, M. M. Coman, M. Ricciutelli, G. Sagratini, S. Vittori, D. Lucarini and F. Maggi, Planta Med., 2007, 73, 564–566.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/c9pp00428a

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delcanale, P., Hally, C., Nonell, S. et al. Photodynamic action of Hypericum perforatum hydrophilic extract against Staphylococcus aureus. Photochem Photobiol Sci 19, 324–331 (2020). https://doi.org/10.1039/c9pp00428a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c9pp00428a

Navigation