Skip to main content
Log in

A quinoline-based fluorescent probe for selective detection and real-time monitoring of copper ions – a differential colorimetric approach

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

A quinoline moiety was used as a building block for designing a probe for the selective detection of copper ions in a partially aqueous medium. We have developed a molecular sensing system which gives insight into the complex physiological and redox aspects of labile copper. The probe provides a colorimetric approach for distinguishing cuprous and cupric ions along with their simultaneous discrimination from other metal ions in the visible range of the spectrum. The chemosensor showed a remarkable fluorescence enhancement along with a significant bathochromic shift of about 35 nm. The detection limit of the probe was found to be 1.03 μM which is optimally favorable to be applied in real-time monitoring. Fabrication of paper strips with the probe was done to detect the presence of cuprous ions in the real sample. The value of the binding constant (1.37 × 104 M−1) suggests stable complex formation between the metal ion and the sensing probe. The photoluminescence and structural aspects of the chemosensor were characterized by using fluorescence, absorption, ESI-MS, and 1H NMR spectroscopy. Furthermore, the cytotoxic nature and bioimaging properties of the probe were interpreted in vitro on RAW 264.7 macrophage cell lines and peripheral blood mononuclear cells (PBMCs) respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. A. Dickinson, J. White, J. S. Kauer and D. R. Walt, A chemical-detecting system based on a cross-reactive optical sensor array, Nature, 1996, 382, 697–700.

    Article  CAS  PubMed  Google Scholar 

  2. C. Bargossi, M. C. Fiorini, M. Montalti, L. Prodi, N. Zaccheroni, V. Selmi and I. Bologna, Recent developments in transition metal ion detection by luminescent chemosensors, Coord. Chem. Rev., 2000, 208, 17–32.

    Article  CAS  Google Scholar 

  3. D. Staneva, M. S. I. Makki, T. R. Sobahi, P. Bosch, R. M. Abdel-Rahman, A. Asiri and I. Grabchev, Synthesis and spectral characterization of a new blue fluorescent tripod for detecting metal cations and protons, J. Lumin., 2015, 162, 149–154.

    Article  CAS  Google Scholar 

  4. V. Kumar, S. Kumar, R. Singh, L. P. Singh, S. K. Shoora and B. Sethi, Cadmium(II) ion sensing through p-tert-butyl calix [6]arene based potentiometric sensor, J. Mol. Liq., 2014, 195, 65–68.

    Article  CAS  Google Scholar 

  5. F. Firdaus, A. Farhi, M. Faraz and M. Shakir, Benzidine based fluorescent probe for the sensitive detection of heavy metal ions via chelation enhanced fluorescence mechanism- A multiplexed sensing platform, J. Lumin., 2018, 199, 475–482.

    Article  CAS  Google Scholar 

  6. M. Lütfi, V. Kumar, T. Eren and A. E. S, A novel electro analytical nanosensor based on graphene oxide/silver nanoparticles for simultaneous determination of quercetin and morin, Electrochim. Acta, 2014, 120, 204–211.

    Article  CAS  Google Scholar 

  7. V. Kumar, B. Sethi, R. A. Sharma, S. Agarwal and A. Bharti, Mercury selective potentiometric sensor based on low rim functionalized thiacalix [4]-arene as a cationic receptor, J. Mol. Liq., 2013, 177, 114–118.

    Article  CAS  Google Scholar 

  8. V. K. Gupta, H. Karimi-maleh and R. Sadegh, Simultaneous Determination of Hydroxylamine, Phenol and Sulfite in Water and Waste Water Samples Using A Voltammetric Nanosensor, Int. J. Electrochem. Sci., 2015, 10, 303–316.

    Google Scholar 

  9. S. K. Srivastava, V. K. Gupta and S. Jain, PVC-Based 2,2,2-Cryptand Sensor for Zinc Ions, Anal. Chem., 1996, 68, 1272–1275.

    Article  CAS  PubMed  Google Scholar 

  10. S. K. Srivastava, V. K. Gupta and S. Jain, Determination of Lead Using a Poly(vinyl chloride)-based Crown Ether Membrane, Analyst, 1995, 120, 495–498.

    Article  CAS  Google Scholar 

  11. L. Prodi, F. Bolletta, M. Montalti, V. Selmi and I. Bologna, Luminescent chemosensors for transition metal ions, Coord. Chem. Rev., 2000, 205, 59–83.

    Article  CAS  Google Scholar 

  12. M. Yang, Ju B. Chae, C. Kim and R. G. Harrison, A visible chemosensor based on carbohydrazide for Fe(II), Co(II) and Cu(II) in aqueous solution, Photochem. Photobiol. Sci., 2019, 18, 1249–1258.

    Article  CAS  PubMed  Google Scholar 

  13. J. Wang and Q. Zong, A new turn-on fluorescent probe for the detection of copper ion in neat aqueous solution, Sens. Actuators, B, 2015, 216, 572–577.

    Article  CAS  Google Scholar 

  14. J. Chen, W. Su, E. Wang and Y. Liu, for Cu(II) and its application in bioimaging, J. Lumin., 2016, 180, 301–305.

    Article  CAS  Google Scholar 

  15. C. Wu, J. Wang, J. Shen, C. Zhang, Z. Wu and H. Zhou, A colorimetric quinoline-based chemosensor for sequential detection of copper ion and cyanide anions, Tetrahedron, 2017, 73, 5715–5719.

    Article  CAS  Google Scholar 

  16. R. An, D. Zhang, Y. Chen and Y. Cui, Sensors and Actuators B: Chemical A “turn-on” fluorescent and colorimetric sensor for selective detection of Cu(II) in aqueous media and living cells, Sens. Actuators, B, 2016, 222, 48–54.

    Article  CAS  Google Scholar 

  17. Q. Lin, Y. Fan, P. Mao, L. Liu, J. Liu and Y. Zhang, Pillar[5] arene-Based Supramolecular Organic Framework with Multi-Guest Detection and Recyclable Separation Properties, Chem.Eur. J., 2018, 24, 777–783.

    Article  CAS  Google Scholar 

  18. M. J. Schnermann, Organic dyes for deep bioimaging, Nature, 2017, 551, 176–177.

    Article  CAS  PubMed  Google Scholar 

  19. H. Karimi-maleh, F. Tahernejad-javazmi, N. Atar, M. Lu, V. K. Gupta and A. A. Ensa, A Novel DNA Biosensor Based on a Pencil Graphite Electrode Modified with Polypyrrole/Functionalized Multiwalled Carbon Nanotubes for Determination of 6- Mercaptopurine Anticancer Drug, Ind. Eng. Chem. Res., 2015, 54, 3634–3639.

    Article  CAS  Google Scholar 

  20. V. Kumar, N. Mergu, L. Kumar and A. Kumar, Selective naked-eye detection of Magnesium(II) ions using a coumarin-derived fluorescent probe, Sens. Actuators, B, 2015, 207, 216–223.

    Article  CAS  Google Scholar 

  21. V. K. Gupta, N. Mergu, L. K. Kumawat and A. K. Singh, A reversible fluorescence “off- on-off” sensor for sequential detection of Aluminum and Acetate/Fluoride ions, Talanta, 2015, 144, 80–89.

    Article  CAS  PubMed  Google Scholar 

  22. V. K. Gupta, A. K. Singh and L. K. Kumawat, Thiazole Schiff base turn-on fluorescent chemosensor for Al3+ ion, Sens. Actuators, B, 2014, 195, 98–108.

    Article  CAS  Google Scholar 

  23. H. Zhu, J. Fan, B. Wang and X. Peng, Chem Soc Rev sensors for the first-row d-block metal ions, Chem. Soc. Rev., 2015, 44, 4337–4366.

    Article  CAS  PubMed  Google Scholar 

  24. H. Yao, Y. Zhang, T. Wei and Q. Lin, Aggregation-Induced Emission Supramolecular Organic Framework (AIE SOF) Gels Constructed from Supramolecular Polymer Networks Based on Tripodal Pillar[5]arene for Fluorescence Detection and Efficient Removal of Various Analytes, ACS Sustainable Chem. Eng., 2019, 7, 11999–12007.

    Google Scholar 

  25. K. J. Waldron, J. C. Rutherford, D. Ford and N. J. Robinson, Metalloproteins and metal sensing, Nature, 2009, 460, 823–830.

    Article  CAS  PubMed  Google Scholar 

  26. L. Tang, J. Zhao, M. Cai, P. Zhou, K. Zhong, S. Hou and Y. Bian, An efficient sensor for relay recognition of Zn2+ and Cu2+ through fluorescence “off – on – off” functionality, Tetrahedron Lett., 2013, 53, 6105–6109.

    Article  CAS  Google Scholar 

  27. Y. Liu, Y. Feng, R. Wang, T. Jiao, J. Li, Y. Rao, Q. Zhang, Z. Bai and Q. Peng, Self- Assembled Naphthylidene-Containing Schiff Base Anchored Polystyrene Nanocomposites Targeted for Selective Cu(II) Ion Removal from Wastewater, ACS Omega, 2019, 4, 12098–12106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. S. Liu, Y. Wang and J. Han, Reviews Fluorescent chemosensors for copper(II) ion: Structure, mechanism, and application, J. Photochem. Photobiol., C, 2017, 32, 78–103.

    Article  CAS  Google Scholar 

  29. L. K. Kumawat, N. Mergu, A. K. Singh and V. K. Gupta, A novel optical sensor for copper ions based on phthalocyanine tetrasulfonic acid, Sens. Actuators, B, 2015, 212, 389–394.

    Article  CAS  Google Scholar 

  30. L. Tang, M. Cai, Z. Huang, K. Zhong and S. Hou, Rapid and highly selective relay recognition of Cu(II) and sulfide ions by a simple benzimidazole-based fluorescent sensor in water, Sens. Actuators, B, 2013, 185, 188–194.

    Article  CAS  Google Scholar 

  31. L. Tang, P. Zhou, K. Zhong and S. Hou, Fluorescence relay enhancement sequential recognition of Cu2+ and CN− by a new quinazoline derivative, Sens. Actuators, B, 2013, 182, 439–445.

    Article  CAS  Google Scholar 

  32. V. Kumar, L. P. Singh, R. Singh, N. Upadhyay, S. P. Kaur and B. Sethi, A novel copper(II) selective sensor based on Dimethyl 4, 4′ (o-phenylene) bis(3-thioallophanate) in PVC matrix, J. Mol. Liq., 2012, 174, 11–16.

    Article  CAS  Google Scholar 

  33. A. Pralle, L. Zeng, E. Y. Isacoff, C. J. Chang and E. W. Miller, A Selective Turn-On Fluorescent Sensor for Imaging Copper in Living Cells, J. Am. Chem. Soc., 2006, 128, 10–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. M. Saleem and K. Lee, Selective fluorescence detection of Cu(II) in aqueous solution and living cells, J. Lumin., 2014, 145, 843–848.

    Article  CAS  Google Scholar 

  35. L. Liu, F. Dan, W. Liu, X. Lu, Y. Han, S. Xiao and H. Lan, A high-contrast colorimetric and fluorescent probe for Cu2+ based on benzimidazole-quinoline, Sens. Actuators, B, 2017, 247, 445–450.

    Article  CAS  Google Scholar 

  36. J. Cody and C. J. Fahrni, Fluorescence sensing based on cation-induced conformational switching: copper-selective modulation of the photoinduced intramolecular charge transfer of a donor–acceptor biphenyl fluorophore, Tetrahedron, 2004, 60, 11099–11107.

    Article  CAS  Google Scholar 

  37. A. Farhi, F. Firdaus and M. Shakir, Design and application of a tripodal on-off type chemosensor for discriminative and selective detection of Fe2+ ions, New J. Chem., 2018, 42, 31–36.

    Article  Google Scholar 

  38. S. R. Bhatta, B. Mondal, G. Vijaykumar and A. Thakur, ICT-Isomerization-Induced Turn-On Fluorescence Probe with a Large Emission Shift for Mercury Ion: Application in Combinational Molecular Logic, Inorg. Chem., 2017, 56, 11577–11590.

    Article  CAS  PubMed  Google Scholar 

  39. M. Suresh, A. K. Mandal, S. Saha, E. Suresh, A. Mandoli, R. Di Liddo, P. P. Parnigotto and A. Das, Azine-based receptor for recognition of Hg2+ ion: Crystallographic evidence and imaging application in live cells, Org. Lett., 2010, 12, 5406–5409.

    Article  CAS  PubMed  Google Scholar 

  40. J. S. Wu, W. M. Liu, X. Q. Zhuang, F. Wang, P. F. Wang, S. L. Tao, X. H. Zhang, S. K. Wu and S. T. Lee, Fluorescence turn on of coumarin derivatives by metal cations: A new signaling mechanism based on C=N isomerization, Org. Lett., 2007, 9, 33–36.

    Article  CAS  PubMed  Google Scholar 

  41. J. Wu, W. Liu, J. Ge, H. Zhang and P. Wang, New sensing mechanisms for the design of fluorescent chemosensors emerging in recent years, Chem. Soc. Rev., 2011, 40, 3483–3495.

    Article  CAS  PubMed  Google Scholar 

  42. Z. Xu and D. R. Spring, Fluorescent chemosensors for Zn2+, Chem. Soc. Rev., 2010, 39, 1996–2006.

    Article  CAS  PubMed  Google Scholar 

  43. Y. Ma, F. Wang, S. Kambam and X. Chen, A quinoline-based fluorescent chemosensor for distinguishing cadmium from zinc ions using cysteine as an auxiliary reagent, Sens. Actuators, B, 2013, 188, 1116–1122.

    Article  CAS  Google Scholar 

  44. M. Saleem and K. H. Lee, Optical sensor: A promising strategy for environmental and biomedical monitoring of ionic species, RSC Adv., 2015, 5, 72150–72287.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farha Firdaus.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/c9pp00247b

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farhi, A., Firdaus, F., Saeed, H. et al. A quinoline-based fluorescent probe for selective detection and real-time monitoring of copper ions – a differential colorimetric approach. Photochem Photobiol Sci 18, 3008–3015 (2019). https://doi.org/10.1039/c9pp00247b

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c9pp00247b

Navigation