Skip to main content
Log in

Novel homogeneous photocatalyst for oxygen to hydrogen peroxide reduction in aqueous media

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

An isoquinolinium-pyrrole donor–acceptor dyad was found to exhibit photocatalytic activity in oxygento-peroxide photoreduction with oxalate as a sacrificial electron donor. The concentration of hydrogen peroxide was shown to reach a plateau of 0.57 mM. The screening of related pyridinium-pyrrole dyads showed the importance of the isoquinoline moiety in securing the photocatalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. I. McConnell, G. Li and G. W. Brudvig, Energy Conversion in Natural and Artificial Photosynthesis, Chem. Biol., 2010, 17, 434–447.

    Article  CAS  Google Scholar 

  2. C. F. Shih, T. Zhang, J. Li and C. Bai, Powering the Future with Liquid Sunshine, Joule, 2018, 2, 1925–1949.

    Article  CAS  Google Scholar 

  3. Y. Lee, C. Park, N. Balaji, Y.-J. Lee and V. A. Dao, High-efficiency Silicon Solar Cells: A Review, Isr. J. Chem., 2015, 55, 1050–1063.

    Article  CAS  Google Scholar 

  4. K. Satoh, Isolation and Properties of the Photosystem II Reaction Center A2, in Photosynthetic Reaction Center, ed. J. Deisenhofer and J. R. Norris, Academic Press, San Diego, 1993.

  5. S. Fukuzumi, Artificial photosynthesis for production of hydrogen peroxide and its fuel cells, Biochim. Biophys. Acta, Bioenerg., 2016, 1857, 604–611.

    Article  CAS  Google Scholar 

  6. H. Imahori, Y. Mori and Y. Matano, Nanostructured artificial photosynthesis, J. Photochem. Photobiol., C, 2003, 4, 51–83.

    Article  CAS  Google Scholar 

  7. T. Bottari, G. Trukhina, O. Ince and M. Torres, Towards artificial photosynthesis: Supramolecular, donor–acceptor, porphyrin- and phthalocyanine/carbon nanostructure ensembles, Coord. Chem. Rev., 2012, 256, 2453–2477.

    Article  CAS  Google Scholar 

  8. R. Ciriminna, L. Albanese, F. Meneguzzo and M. Pagliaro, Hydrogen Peroxide: A Key Chemical for Today’s Sustainable Development, ChemSusChem, 2016, 9, 3374–3381.

    Article  CAS  Google Scholar 

  9. R. S. Disselkamp, Energy Storage using Aqueous Hydrogen Peroxide, Energy Fuels, 2008, 22, 2771–2774.

    Article  CAS  Google Scholar 

  10. S. Fukuzumi and Y. Yamada, Hydrogen Peroxide used as a Solar Fuel in One-Compartment Fuel Cells, ChemElectroChem, 2016, 3, 1978–1989.

    Article  CAS  Google Scholar 

  11. G. Goor, J. Glenneberg and S. Jacobi, Hydrogen Peroxide, in Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH, 2000.

  12. G. Irick, Determination of the Photocatalytic Activities of Titanium Dioxides and Other White Pigments, J. Appl. Polym. Sci., 1972, 16, 2387–2395.

    Article  CAS  Google Scholar 

  13. J. R. Harbour, J. Tromp and M. L. Hair, Photogeneration of hydrogen peroxide in aqueous TiO2 dispersions, Can. J. Chem., 1985, 63, 204–208.

    Article  CAS  Google Scholar 

  14. M. C. Markham and K. J. Laidler, A kinetic study of photooxidations on the surface of zinc oxide in aqueous suspensions, J. Phys. Chem., 1953, 57, 363–369.

    Article  CAS  Google Scholar 

  15. T. R. Rubin, J. G. Calvert, G. T. Rankin and W. MacNevin, Photochemical Synthesis of Hydrogen Peroxide at Zinc Oxide Surfaces, J. Am. Chem. Soc., 1953, 75, 2850–2853.

    Article  CAS  Google Scholar 

  16. A. P. Hong, D. W. Bahnemann and M. R. Hoffmann, Cobalt (II) Tetrasulfophthalocyanine on Titanium Dioxide: A New Efficient Electron Relay for the Photocatalytic Formation and Depletion of Hydrogen Peroxide in Aqueous Suspensions, J. Phys. Chem., 1987, 91, 2109–2117.

    Article  CAS  Google Scholar 

  17. C. Wang, X. Zhang, B. Yuan, Y. Wang, P. Sun, D. Wang, Y. Wei and Y. Liu, Multi-heterojunction photocatalysts based on WO3 nanorods: Structural design and optimization for enhanced photocatalytic activity under visible light, Chem. Eng. J., 2014, 237, 29–37.

    Article  CAS  Google Scholar 

  18. H. Kim, O. S. Kwon, S. Kim, W. Choi and J. H. Kim, Harnessing low energy photons (635 nm) for the production of H2O2 using upconversion nanohybrid photocatalysts, Energy Environ. Sci., 2016, 9, 1063–1073.

    Article  CAS  Google Scholar 

  19. K. Ohkubo, K. Suga and S. Fukuzumi, Solvent-free selective photocatalytic oxidation of benzyl alcohol to benzaldehyde by molecular oxygen using 9-phenyl-10-methylacridinium, Chem. Commun., 2006, 2018–2020.

  20. H. Kotani, K. Ohkubo and S. Fukuzumi, Photocatalytic Oxygenation of Anthracenes and Olefins with Dioxygen via Selective Radical Coupling Using 9-Mesityl-10-methylacridinium Ion as an Effective Electron-Transfer Photocatalyst, J. Am. Chem. Soc., 2004, 126, 15999–16006.

    Article  CAS  Google Scholar 

  21. H. Kotani, K. Ohkubo and S. Fukuzumi, Formation of hydrogen peroxide from coal tar as hydrogen sources using 9-mesityl-10-methylacridinium ion as an effective photocatalyst, Appl. Catal., B, 2008, 77, 317–324.

    Article  CAS  Google Scholar 

  22. K. Ohkubo, K. Mizushima, R. Iwata, K. Souma, N. Suzuki and S. Fukuzumi, Simultaneous production of p-tolualdehyde and hydrogen peroxide in photocatalytic oxygenation of p-xylene and reduction of oxygen with 9-mesityl-10-methylacridinium ion derivatives, Chem. Commun., 2010, 46, 601–603.

    Article  CAS  Google Scholar 

  23. K. Ohkubo, T. Kobayashi and S. Fukuzumi, Direct Oxygenation of Benzene to Phenol Using Quinolinium Ions as Homogeneous Photocatalysts, Angew. Chem., Int. Ed., 2011, 50, 8652–8655.

    Article  CAS  Google Scholar 

  24. K. Ohkubo, T. Kobayashi and S. Fukuzumi, Photocatalytic alkoxylation of benzene with 3-cyano-1-methylquinolinium ion, Opt. Express, 2012, 20, A360.

    Article  CAS  Google Scholar 

  25. K. Ohkubo, A. Fujimoto and S. Fukuzumi, Photocatalytic Monofluorination of Benzene by Fluoride via Photoinduced Electron Transfer with 3-Cyano-1-methylquinolinium, J. Phys. Chem. A, 2013, 117, 10719–10725.

    Article  CAS  Google Scholar 

  26. Y. Yamada, A. Nomura, T. Miyahigashi and S. Fukuzumi, Photocatalytic production of hydrogen peroxide by twoelectron reduction of dioxygen with carbon-neutral oxalate using a 2-phenyl-4-(1-naphthyl)quinolinium ion as a robust photocatalyst, Chem. Commun., 2012, 48, 8329–8331.

    Article  CAS  Google Scholar 

  27. Y. Yamada, A. Nomura, T. Miyahigashi, K. Ohkubo and S. Fukuzumi, Acetate Induced Enhancement of Photocatalytic Hydrogen Peroxide Production from Oxalic Acid and Dioxygen, J. Phys. Chem. A, 2013, 117, 3751–3760.

    Article  CAS  Google Scholar 

  28. Y. Yamada, A. Nomura, K. Ohkubo, T. Suenobu and S. Fukuzumi, The long-lived electron transfer state of the 2-phenyl-4-(1-naphthyl)quinolinium ion incorporated into nanosized mesoporous silica–alumina acting as a robust photo-catalyst in water, Chem. Commun., 2013, 49, 5132–5134.

    Article  CAS  Google Scholar 

  29. G. Xu, Y. Liang and F. Chen, Continuously photocatalytic production of H2O2 with high concentrations using 2-ethylanthraquinone as photocatalyst, J. Mol. Catal. A: Chem., 2016, 420, 66–72.

    Article  CAS  Google Scholar 

  30. H. Görner, Photoinduced oxygen uptake for 9,10-anthraquinone in air-saturated aqueous acetonitrile in the presence of formate, alcohols, ascorbic acid or amines, Photochem. Photobiol. Sci., 2006, 5, 1052–1058.

    Article  Google Scholar 

  31. A. F. Khlebnikov, M. V. Golovkina, M. S. Novikov and D. S. Yufit, A Novel Strategy for the Synthesis of 3-(N-Heteryl)pyrrole Derivatives, Org. Lett., 2012, 14, 3768–3771.

    Article  CAS  Google Scholar 

  32. L. D. Funt, M. S. Novikov, G. L. Starova and A. F. Khlebnikov, Synthesis and properties of new heterocyclic betaines: 4-Aryl-5-(methoxycarbonyl)-2-oxo-3-(pyridin-1-ium-1-yl)-2,3-dihydro-1H-pyrrol-3-ides, Tetrahedron, 2018, 74, 2466–2474.

    Article  CAS  Google Scholar 

  33. R. M. Sellers, Spectrophotometric Determination of Hydrogen Peroxide Using Potassium Titanium(IV) Oxalate, Analyst, 1980, 105, 950–954.

    Article  CAS  Google Scholar 

  34. S. B. Brown, P. Jones and A. Suggett, Iron(III) complex interference in the iodometric determination of hydrogen peroxide, Anal. Chim. Acta, 1968, 43, 343–346.

    Article  CAS  Google Scholar 

  35. J. Nasielski and E. Vander Donckt, Propriété physicochimiques de composés à caractère aromatique IX. Mise en évidence de complexes de transfert de charge entre des dérivés N-méthylés monoaza-aromatiques et des hydro-carbures aromatiques, Theor. Chim. Acta, 1964, 2, 22–28.

    Article  CAS  Google Scholar 

  36. J. P. Dinnocenzo, P. B. Merkel and S. Farid, Cationic (charge shift) exciplexes, J. Phys. Chem. A, 2017, 121, 7903–7909.

    Article  CAS  Google Scholar 

  37. K. Ohkubo, S. Fukuzumi and D. A. Nicewicz, 9-Mesityl-10-methylacridinium Perchlorate, in Encyclopedia of Reagents for Organic Synthesis, John Wiley & Sons, 2001.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander S. Konev.

Additional information

Electronic supplementary information (ESI) available: Calibration curve for titanyl oxalate photometric analysis, UV-Vis spectra of compounds IIII, other data on electrochemical and photophysical study of IIa. See DOI: 10.1039/c9pp00206e

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lukyanov, D.A., Funt, L.D., Konev, A.S. et al. Novel homogeneous photocatalyst for oxygen to hydrogen peroxide reduction in aqueous media. Photochem Photobiol Sci 18, 1982–1989 (2019). https://doi.org/10.1039/c9pp00206e

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c9pp00206e

Navigation