Skip to main content
Log in

Highly fluorescent hybrid pigments from anthocyanin- and red wine pyranoanthocyanin-analogs adsorbed on sepiolite clay

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Flavylium cations serve as models for the chemical and photochemical reactivity of anthocyanins, the natural plant pigment responsible for many of the red, blue and purple colors of fruits and flowers. Likewise, pyranoflavylium cations serve as models of the fundamental chromophoric moiety of pyra-noanthocyanins, molecules that can form from reactions of grape anthocyanins in red wines during their maturation. In the present work, hybrid pigments are prepared by the adsorption of a series of five synthetic flavylium cations (FL) and five synthetic pyranoflavylium cations (PFL) on sepiolite clay (SEP). The FL are smaller in size than the PFL, but both can in principle fit into the tunnels and/or external grooves (with dimensions of 3.7 × 10.6 Å) of SEP. Measurements of the fluorescence quantum yields of the adsorbed dyes indicate that they are at least as fluorescent as in acidic acetonitrile solution, and in a few cases substantially more fluorescent. The observation of biexponential fluorescence decays is consistent with emission from dye molecules adsorbed at two distinct sites, presumably tunnels and grooves. These hybrid materials also have improved properties in terms of stability of the color in contact with pH 10 aqueous solution and resistance to thermal degradation of the dye. SEP thus appears to be a promising substrate for the development of highly fluorescent flavylium or pyranoflavylium cation-derived hybrid pigments with improved color and thermal stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. F. Brigatti, E. Galan and B. K. G. Theng, Developments in Clay Science, in, Chapter 2, Handbook of Clay Science, 2006, vol. 1, pp. 19–86.

  2. E. Galan, Properties and applications of palygorskite-sepiolite clays, Clay Miner., 1996, 31, 443–453.

    Article  CAS  Google Scholar 

  3. V. Martínez-Martínez, C. Corcóstegui, J. Bañuelos Prieto, L. Gartzia, S. Salleres and I. López Arbeloa, Distribution and orientation study of dyes intercalated into single sepiolite fibers. A confocal fluorescence microscopy approach, J. Mater. Chem., 2011, 21, 269–276.

    Article  Google Scholar 

  4. E. Ruiz-Hitzky, Molecular access to intracrystalline tunnels of sepiolite, J. Mater. Chem., 2001, 11, 86–91.

  5. D. Karataş, A. Tekin and M. S. Çelik, Density functional theory computation of organic compound penetration into sepiolite tunnels, Clays Clay Miner., 2017, 65, 1–13.

    Article  Google Scholar 

  6. S. Ovarlez, F. Giulieri, A. Chaze and F. Delamare, The Incorporation of Indigo Molecules in Sepiolite Tunnels, Chem. –, Eur. J., 2009, 15, 11326–11332.

    Article  CAS  Google Scholar 

  7. M. Sánchez Del Río and P. Martinetto, Synthesis and Acid Resistance of Maya Blue Pigment, Archaeometry, 2006, 48, 115–130.

    Article  Google Scholar 

  8. E. Arnold and J. Branden, The first direct evidence for the production of Maya Blue: rediscovery of a technology, Antiquity, 2008, 82, 151–164.

    Article  Google Scholar 

  9. G. Chiari, R. Giustetto, J. Druzik, E. Doehne and G. Ricchiardi, Pre-columbian nanotechnology: Reconciling the mysteries of the maya blue pigment, Appl. Phys. A: Mater. Sci. Process., 2008, 90, 3–7.

    Article  CAS  Google Scholar 

  10. A. Tilocca and E. Fois, The color and stability of maya blue: TDDFT calculations, J. Phys. Chem. C, 2009, 113, 8683–8687.

    Article  CAS  Google Scholar 

  11. R. Giustetto, F. X. Llabrés I Xamena, G. Ricchiardi, S. Bordiga, A. Damin, R. Gobetto and M. R. Chierotti, Maya blue: A computational and spectroscopic study, J. Phys. Chem. B, 2005, 109, 19360–19368.

    Article  CAS  PubMed  Google Scholar 

  12. R. Giustetto, D. Levy and G. Chiari, Crystal structure refinement of Maya Blue pigment prepared with deuterated indigo, using neutron powder diffraction, Eur. J. Mineral., 2006, 18, 629–640.

    Article  CAS  Google Scholar 

  13. R. Giustetto, D. Levy, O. Wahyudi, G. Ricchiardi and J. G. Vitillo, Crystal structure refinement of a sepiolite/indigo Maya Blue pigment using molecular modelling and synchrotron diffraction, Eur. J. Mineral., 2011, 23, 449–466.

    Article  CAS  Google Scholar 

  14. E. Lima, A. Guzmán, M. Vera, J. L. Rivera and J. Fraissard, Aged natural and synthetic Maya Blue-like pigments: What difference does it make?, J. Phys. Chem. C, 2012, 116, 4556–4563.

    Article  CAS  Google Scholar 

  15. R. Giustetto, K. Seenivasan, F. Bonino, G. Ricchiardi, S. Bordiga, M. R. Chierotti and R. Gobetto, Host/guest interactions in a sepiolite-based maya blue pigment: A spectroscopic study, J. Phys. Chem. C, 2011, 115, 16764–16776.

    Article  CAS  Google Scholar 

  16. A. Doménech, M. T. Doménech-Carbó and H. G. M. Edwards, On the interpretation of the Raman spectra of Maya Blue: A review on the literature data, J. Raman Spectrosc., 2011, 42, 86–96.

    Article  CAS  Google Scholar 

  17. C. Tsiantos, M. Tsampodimou, G. H. Kacandes, M. Sánchez Del Río, V. Gionis and G. D. Chryssikos, Vibrational investigation of indigo-palygorskite association (s) in synthetic Maya blue, J. Mater. Sci., 2012, 47, 3415–3428.

    Article  CAS  Google Scholar 

  18. A. Doménech-Carbó, M. T. Doménech-Carbó, F. M. Valle-Algarra, M. E. Domine and L. Osete-Cortina, On the dehydroindigo contribution to Maya Blue, J. Mater. Sci., 2013, 48, 7171–7183.

    Article  CAS  Google Scholar 

  19. G. Chiari, R. Giustetto and G. Ricchiardi, Crystal structure refinements of palygorskite and Maya Blue from molecular modelling and powder synchrotron diffraction, Eur. J. Mineral., 2003, 15, 21–33.

    Article  CAS  Google Scholar 

  20. R. Giustetto, O. Wahyudi, I. Corazzari and F. Turci, Chemical stability and dehydration behavior of a sepiolite/indigo Maya Blue pigment, Appl. Clay Sci., 2011, 52, 41–50.

    Article  CAS  Google Scholar 

  21. Y. Zhang, J. Dong, H. Sun, B. Yu, Z. Zhu, J. Zhang and A. Wang, Solvatochromic Coatings with Self-Cleaning Property from Palygorskite@Polysiloxane/Crystal Violet Lactone, ACS Appl. Mater. Interfaces, 2016, 8, 27346–27352.

    Article  CAS  PubMed  Google Scholar 

  22. Y. Zhang, J. Zhang and A. Wang, From Maya blue to biomimetic pigments: durable biomimetic pigments with self-cleaning property, J. Mater. Chem. A, 2016, 4, 901–907.

    Article  CAS  Google Scholar 

  23. S. Wu, J. Huang, H. Cui, T. Ye, F. Hao, W. Xiong, P. Liu and H. Luo, Preparation of organic–inorganic hybrid methylene blue polymerized organosilane/sepiolite pigments with superhydrophobic and self-cleaning properties, Text. Res. J., DOI: 10.1177/0040517519829924.

  24. Y. Zhang, J. Zhang and A. Wang, Facile preparation of stable palygorskite/methyl violet@SiO2 “Maya Violet” pigment, J. Colloid Interface Sci., 2015, 457, 254–263.

    Article  CAS  PubMed  Google Scholar 

  25. L. Fan, Y. Zhang, J. Zhang and A. Wang, Facile preparation of stable palygorskite/cationic red X-GRL@SiO 2 “Maya Red” pigments, RSC Adv., 2014, 4, 63485–63493.

    Article  CAS  Google Scholar 

  26. Y. Zhang, W. Wang, B. Mu, Q. Wang and A. Wang, Effect of grinding time on fabricating a stable methylene blue/palygorskite hybrid nanocomposite, Powder Technol., 2015, 280, 173–179.

    Article  CAS  Google Scholar 

  27. Q. Wang, B. Mu, Y. Zhang, J. Zhang and A. Wang, Palygorskite-based hybrid fluorescent pigment: Preparation, spectroscopic characterization and environmental stability, Microporous Mesoporous Mater., 2016, 224, 107–115.

    Article  CAS  Google Scholar 

  28. Y. Zhang, L. Fan, H. Chen, J. Zhang, Y. Zhang and A. Wang, Learning from ancient Maya: Preparation of stable palygorskite/methylene blue@SiO2 Maya Blue-like pigment, Microporous Mesoporous Mater., 2015, 211, 124–133.

    Article  CAS  Google Scholar 

  29. R. Giustetto, J. G. Vitillo, I. Corazzari and F. Turci, Evolution and reversibility of host/guest interactions with temperature changes in a methyl red@palygorskite polyfunctional hybrid nanocomposite, J. Phys. Chem. C, 2014, 118, 19322–19337.

    Article  CAS  Google Scholar 

  30. R. Giustetto and O. Wahyudi, Sorption of red dyes on palygorskite: Synthesis and stability of red/purple Mayan nanocomposites, Microporous Mesoporous Mater., 2011, 142, 221–235.

    Article  CAS  Google Scholar 

  31. S. Wu, Z. Duan, F. Hao, S. Xiong, W. Xiong, Y. Lv, P. Liu and H. Luo, Preparation of acid-activated sepiolite/Rhodamine B@SiO2 hybrid fluorescent pigments with high stability, Dyes Pigm., 2017, 137, 395–402.

    Article  CAS  Google Scholar 

  32. S. Wu, H. Cui, C. Wang, F. Hao, P. Liu and W. Xiong, In situ self-assembled preparation of the hybrid nanopigment from raw sepiolite with excellent stability and optical performance, Appl. Clay Sci., 2018, 163, 1–9.

    Article  CAS  Google Scholar 

  33. G. Tian, W. Wang, D. Wang, Q. Wang and A. Wang, Novel environment friendly inorganic red pigments based on attapulgite, Powder Technol., 2017, 315, 60–67.

    Article  CAS  Google Scholar 

  34. Q. Wang, B. Mu, W. Wang, A. Wang and G. Tian, Costefficient, vivid and stable red hybrid pigments derived from naturally available sepiolite and halloysite, Ceram. Int., 2016, 43, 1862–1869.

    Google Scholar 

  35. H. Li, A. Zhang, A. Wang, B. Mu and X. An, Cobalt blue hybrid pigment doped with magnesium derived from sepiolite, Appl. Clay Sci., 2018, 157, 111–120.

    Article  CAS  Google Scholar 

  36. L. F. Casassa and J. F. Harbertson, Extraction, Evolution, and Sensory Impact of Phenolic Compounds During Red Wine Maceration, Annu. Rev. Food Sci. Technol., 2014, 5, 83–109.

    Article  CAS  PubMed  Google Scholar 

  37. J. Heras-Roger, C. Díaz-Romero and J. Darias-Martín, What Gives a Wine Its Strong Red Color? Main Correlations Affecting Copigmentation, J. Agric. Food Chem., 2016, 64, 6567–6574.

    Article  CAS  PubMed  Google Scholar 

  38. K. Tang, T. Liu, Y. Han, Y. Xu and J. M. Li, The Importance of Monomeric Anthocyanins in the Definition of Wine Colour Properties, S. Afr. J. Enol. Vitic., 2017, 38, 1–10.

    CAS  Google Scholar 

  39. R. Brouillard, S. Chassaing and A. Fougerousse, Why are grape/fresh wine anthocyanins so simple and why is it that red wine color lasts so long?, Phytochemistry, 2003, 64, 1179–1186.

    Article  CAS  PubMed  Google Scholar 

  40. M. Schwarz, T. C. Wabnitz and P. Winterhalter, Pathway Leading to the Formation of Anthocyanin−Vinylphenol Adducts and Related Pigments in Red Wines, J. Agric. Food Chem., 2003, 51, 3682–3687.

    Article  CAS  PubMed  Google Scholar 

  41. H. Fulcrand, M. Dueñas, E. Salas and V. Cheynier, Phenolic reactions during winemaking and aging, Am. J. Enol. Vitic., 2006, 57, 289–297.

    CAS  Google Scholar 

  42. A. Marquez, M. P. Serratosa and J. Merida, Pyranoanthocyanin Derived Pigments in Wine: Structure and Formation during Winemaking, J. Chem., 2013, 2013, 1–15.

    Google Scholar 

  43. J. Oliveira, N. Mateus and V. de Freitas, Previous and recent advances in pyranoanthocyanins equilibria in aqueous solution, Dyes Pigm., 2014, 100, 190–200.

    Article  CAS  Google Scholar 

  44. M. Figueiredo-González, B. Cancho-Grande, J. Simal-Gándara, N. Teixeira, N. Mateus and V. De Freitas, The phenolic chemistry and spectrochemistry of red sweet winemaking and oak-aging, Food Chem., 2014, 152, 522–530.

    Article  PubMed  CAS  Google Scholar 

  45. G. T. M. Silva, C. P. Silva, M. H. Gehlen, J. Oake, C. Bohne and F. H. Quina, Organic/inorganic hybrid pigments from flavylium cations and palygorskite, Appl. Clay Sci., 2018, 162, 478–486.

    Article  CAS  Google Scholar 

  46. A. A. Freitas, A. A. L. Maçanita and F. H. Quina, Improved analysis of excited state proton transfer kinetics by the combination of standard and convolution methods. Photochem. Photobiol. Sci., 2013, 12, 902–910.

    Article  CAS  PubMed  Google Scholar 

  47. B. Held, H. Tang, P. Natarajan, C. P. Silva, V. O. Silva, C. Bohne and F. H. Quina, Cucurbit[7]uril inclusion complexation as a supramolecular strategy for color stabilization of anthocyanin model compounds, Photochem. Photobiol. Sci., 2016, 15, 752–757.

    Article  CAS  PubMed  Google Scholar 

  48. C. P. Silva, R. M. Pioli, L. Liu, S. Zheng, M. Zhang, G. T. M. Silva, V. M. T. Carneiro and F. H. Quina, Improved Synthesis of Analogues of Red Wine Pyranoanthocyanin Pigments, ACS Omega, 2018, 3, 954–960.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. J. Madejová, W. P. Gates and S. Petit, Developments in Clay Science, in, Chapter 5, Handbook of Clay Science, 2017, vol. 8, pp. 107–149.

  50. C. He, E. Makovicky and B. Osbæck, Thermal treatment and pozzolanic activity of sepiolite, Appl. Clay Sci., 1996, 10, 337–349.

    Article  CAS  Google Scholar 

  51. M. K.Wang, P. C. Tseng, S. S. Chang, D. T. Ray, Y. H. Shau, Y. W. Shen, R. C. Chen and P. N. Chiang, Origin and mineralogy of sepiolite and palygorskite from the tuluanshan formation, eastern taiwan, Clays Clay Miner., 2009, 57, 521–530.

    Article  CAS  Google Scholar 

  52. V. Gionis, G. H. Kacandes, I. D. Kastritis and G. D. Chryssikos, Combined near-infrared and x-ray diffraction investigation of the octahedral sheet composition of palygorskite, Clays Clay Miner., 2007, 55, 543–553.

    Article  CAS  Google Scholar 

  53. C. Vogt, J. Lauterjung and R. X. Fischer, Investigation of the Clay Fraction (<2 μm) of the Clay Minerals Society Reference Clays, Clays Clay Miner., 2002, 50, 388–400.

    Article  CAS  Google Scholar 

  54. M. R. Weir, W. Kuang, G. A. Facey and C. Detellier, Solidstate nuclear magnetic resonance study of sepiolite and partially dehydrated sepiolite, Clays Clay Miner., 2002, 50, 240–247.

    Article  CAS  Google Scholar 

  55. B. Hubbard, W. Kuang, A. Moser, G. A. Facey and C. Detellier, Structural study of Maya Blue: Textural, thermal and solid-state multinuclear magnetic resonance characterization of the palygorskite-indigo and sepioliteindigo adducts, Clays Clay Miner., 2003, 51, 318–326.

    Article  CAS  Google Scholar 

  56. Z. Li, C. A. Willms and K. Kniola, Removal of anionic contaminants using surfactant-modified palygorskite and sepiolite, Clays Clay Miner., 2003, 51, 445–451.

    Article  CAS  Google Scholar 

  57. A. Gilchrist and J. Nobbs, Encycl. Spectrosc. Spectrom, 2nd edn, 1999, pp. 380–385.

  58. E. P. Tomasini, E. S. Román and S. E. Braslavsky, Validation of fluorescence quantum yields for light-scattering powdered samples by laser-induced optoacoustic spectroscopy, Langmuir, 2009, 25, 5861–5868.

    Article  CAS  PubMed  Google Scholar 

  59. S. Tunç, O. Duman and R. Uysal, Electrokinetic and Rheological Behaviors of Sepiolite Suspensions in the Presence of Poly(acrylic acid sodium salt)s, Polyacrylamides, and Poly(ethylene glycol)s of Different Molecular Weights, J. Appl. Polym. Sci., 2008, 109, 1850–1860.

    Article  CAS  Google Scholar 

  60. H. Shariatmadari, A. R. Mermut and M. B. Benke, Sorption of selected cationic and neutral organic molecules on palygorskite and sepiolite, Clays Clay Miner., 1999, 47, 44–53.

    Article  CAS  Google Scholar 

  61. F. L. Arbeloa, T. L. Arbeloa and I. L. Arbeloa, Spectroscopy of Rhodamine 6G Adsorbed on Sepiolite Aqueous Suspensions, J. Colloid Interface Sci., 2002, 187, 105–112.

    Article  Google Scholar 

  62. A. A. Freitas, C. P. Silva, G. T. M. Silva, A. L. Maçanita and F. H. Quina, Ground- and Excited-State Acidity of Analogs of Red Wine Pyranoanthocyanins, Photochem. Photobiol., 2018, 94, 1086–1091.

    Article  CAS  PubMed  Google Scholar 

  63. M. S. Çelik, in, Clay Surfaces: Fundamentals and Applications, 2004, vol. 1, pp. 57–89.

  64. M. Alkan, Ö. Demirbaş and M. Doğan, Electrokinetic properties of sepiolite suspensions in different electrolyte media, J. Colloid Interface Sci., 2005, 281, 240–248.

    Article  CAS  PubMed  Google Scholar 

  65. F. Siddique, C. P. Silva, G. T. M. Silva, H. Lischka, F. H. Quina and A. J. A. Aquino, The electronic transitions of analogs of red wine pyranoanthocyanin pigments, Photochem. Photobiol. Sci., 2019, 18, 45–53.

    Article  CAS  PubMed  Google Scholar 

  66. Y. Kohno, Y. Shibata, N. Oyaizu, K. Yoda, M. Shibata and R. Matsushima, Stabilization of flavylium dye by incorporation into the pore of protonated zeolites, Microporous Mesoporous Mater., 2008, 114, 373–379.

    Article  CAS  Google Scholar 

  67. Y. Kohno, R. Kinoshita, S. Ikoma, K. Yoda, M. Shibata, R. Matsushima, Y. Tomita, Y. Maeda and K. Kobayashi, Stabilization of natural anthocyanin by intercalation into montmorillonite, Appl. Clay Sci., 2009, 42, 519–523.

    Article  CAS  Google Scholar 

  68. Y. Kohno, S. Tsubota, Y. Shibata, K. Nozawa, K. Yoda, M. Shibata and R. Matsushima, Enhancement of the photostability of flavylium dye adsorbed on mesoporous silicate, Microporous Mesoporous Mater., 2008, 116, 70–76.

    Article  CAS  Google Scholar 

  69. G. T. M. Silva, S. S. Thomas, C. P. Silva, J. C. Schlothauer, M. S. Baptista, A. A. Freitas, C. Bohne and F. H. Quina, Triplet Excited States and Singlet Oxygen Production by Analogs of Red Wine Pyranoanthocyanins, Photochem. Photobiol., 2018, 95, 176–182.

    Article  PubMed  CAS  Google Scholar 

  70. A. A. Freitas, C. P. Silva, G. T. M. Silva, A. L. Maçanita and F. H. Quina, From vine to wine: photophysics of a pyranoflavylium analog of red wine pyranoanthocyanins, Pure Appl. Chem., 2017, 89, 1761–1767.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank H. Quina.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/c9pp00141g

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, G.T.M., da Silva, K.M., Silva, C.P. et al. Highly fluorescent hybrid pigments from anthocyanin- and red wine pyranoanthocyanin-analogs adsorbed on sepiolite clay. Photochem Photobiol Sci 18, 1750–1760 (2019). https://doi.org/10.1039/c9pp00141g

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c9pp00141g

Navigation