Skip to main content
Log in

The role of viscosity in various dynamical processes of different fluorophores in ionic liquid— cosolvent mixtures: a femtosecond fluorescence upconversion study

  • PAPER
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Literature reports provide ample evidence of the dynamical studies of various fluorophores in different room-temperature ionic liquid (RTIL)-cosolvent mixtures. However, most of the experimental and simulation studies reveal that ~50% of the spectral relaxation dynamics is fast and cannot be resolved using traditional time correlated single photon counting (TCSPC) measurements. Our group has also investigated the dynamics of a solvatochromic probe coumarin 153 (C153) in a RTIL-cosolvent mixture using a TCSPC setup (S. Sarkar, R. Pramanik, C. Ghatak, P. Setua and N. Sarkar, J. Phys. Chem. B, 2010, 114, 2779-2789). Consequently, a major portion of the solvation dynamics remained undetected and moreover we could not monitor the dynamics beyond 0.4 mole fraction of the cosolvents. Thus in this study, we have rekindled our interest to sufficiently capture the rotational anisotropy and solvation dynamics of C153 beyond 0.4 mole fraction of the cosolvents in the RTIL-cosolvent mixture employing femtosecond fluorescence upconversion measurements. Additionally, we have utilized another RTIL with a higher alkyl chain length and viscosity to obtain a comprehensive and quantitative picture of the role of viscosity on the dynamics of the probe molecule. The most interesting observation of the present work is that the viscosities of different RTIL-cosolvent mixtures can efficiently control the cis-trans isomerization kinetics of the anionic fluorophore merocyanine 540 (MC 540) and the translational diffusion of a hydrophobic probe. The optimization of geometrical structures of [EmimOs]- and [EmimOs]-cosolvent mixtures followed by frequency analyses in both gas and solution phases have been carried out using quantum chemical calculations with the aid of density functional theory (DFT) methods. The computation based on the bond distances, electron densities and non-covalent interactions (NCI) has also been used to investigate the existence of the hydrogen-bond (H-bond). Again to comprehend van der Waals interactions and the conventional hydrogen-bond, the evolution of NCI plots are simulated. Therefore, the detailed experimental and theoretical studies presented in this manuscript lead to the inference that addition of the conventional solvents finely tunes the physicochemical properties of RTILs and broadens their scope of applications in the fields of chemistry and biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. D. Rogers and K. R. Seddon, Science, 2003, 302, 792.

    Article  PubMed  Google Scholar 

  2. J. P. Hallett and T. Welton, Chem. Rev., 2011, 111, 3508.

    Article  CAS  PubMed  Google Scholar 

  3. J. Dupont, Acc. Chem. Res., 2011, 44, 1223.

    Article  CAS  PubMed  Google Scholar 

  4. M. Armand, F. Endres, D. R. MacFarlane, H. Ohno and B. Scrosati, Nat. Mater., 2009, 8, 621.

    Article  CAS  PubMed  Google Scholar 

  5. N. V. Plechkova and K. R. Seddon, Chem. Soc. Rev., 2008, 37, 123.

    Article  CAS  PubMed  Google Scholar 

  6. J. S. Wilkes, Green Chem., 2002, 4, 73.

    Article  CAS  Google Scholar 

  7. T. Welton, Chem. Rev., 1999, 99, 2071.

    Article  CAS  PubMed  Google Scholar 

  8. R. Dutta, S. Kundu and N. Sarkar, Biophys. Rev., 2018, 10, 861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. R. Dutta, S. Ghosh, P. Banerjee, S. Kundu and N. Sarkar, J. Colloid Interface Sci., 2017, 490, 762.

    Article  CAS  PubMed  Google Scholar 

  10. A. Samanta, J. Phys. Chem. Lett., 2010, 1, 1557.

    Article  CAS  Google Scholar 

  11. O. Russina, A. Mariani, R. Caminiti and A. Triolo, J. Solution Chem., 2015, 44, 669.

    Article  CAS  Google Scholar 

  12. Y. Wang and G. A. Voth, J. Am. Chem. Soc., 2005, 127, 12192.

    Article  CAS  PubMed  Google Scholar 

  13. Z. Hu and C. J. Margulis, Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. J. N. A. C. Lopes and A. A. H. Pádua, J. Phys. Chem. B, 2006, 110, 3330.

    Article  CAS  Google Scholar 

  15. Y. Wang, W. Jiang, T. Yan and G. A. Voth, Acc. Chem. Res., 2007, 40, 1193.

    Article  CAS  PubMed  Google Scholar 

  16. D. Xiao, J. R. Rajian, S. Li, R. A. Bartsch and E. L. Quitevis, J. Phys. Chem. B, 2006, 110, 16174.

    Article  CAS  PubMed  Google Scholar 

  17. K. Iwata, H. Okajima, S. Saha and H. Hamaguchi, Acc. Chem. Res., 2007, 40, 1174.

    Article  CAS  PubMed  Google Scholar 

  18. R. Atkin and G. G. Warr, J. Phys. Chem. B, 2008, 112, 4164.

    Article  CAS  PubMed  Google Scholar 

  19. C. Hardacre, J. D. Holbrey, C. L. Mullan, T. G. A. Youngs and D. T. Bowron, J. Chem. Phys., 2010, 133, 074510.

    Article  PubMed  CAS  Google Scholar 

  20. O. Russina, A. Triolo, L. Gontrani and R. Caminiti, J. Phys. Chem. Lett., 2012, 3, 27.

    Article  CAS  Google Scholar 

  21. D. C. Khara and A. Samanta, Indian J. Chem., 2010, 49, 714.

    Google Scholar 

  22. S. R. Prabhu and G. B. Dutt, J. Phys. Chem. B, 2014, 118, 5562.

    Article  CAS  PubMed  Google Scholar 

  23. J. Wishart, J. Phys. Chem. Lett., 2010, 1, 1629.

    Article  CAS  Google Scholar 

  24. P. K. Mandal, S. Saha, R. Karmakar and A. Samanta, Curr. Sci., 2006, 90, 301.

    CAS  Google Scholar 

  25. R. Karmakar and A. Samanta, J. Phys. Chem. A, 2003, 107, 7340.

    Article  CAS  Google Scholar 

  26. B. M. Ladanyi and M. Maroncelli, J. Chem. Phys., 1998, 109, 3204.

    Article  CAS  Google Scholar 

  27. X.-. X. Zhang, M. Liang, N. P. Ernsting and M. Maroncelli, J. Phys. Chem. B, 2013, 117, 4291.

    Article  CAS  PubMed  Google Scholar 

  28. R. Karmakar and A. Samanta, J. Phys. Chem. A, 2002, 106, 4447.

    Article  CAS  Google Scholar 

  29. M. Halder, L. S. Headley, P. Mukherjee, X. Song and J. W. Petrich, J. Phys. Chem. A, 2006, 110, 8623.

    Article  CAS  PubMed  Google Scholar 

  30. B. Lang, G. Angulo and E. Vauthey, J. Phys. Chem. A, 2006, 110, 7028.

    Article  CAS  PubMed  Google Scholar 

  31. S. Arzhantsev, H. Jin, G. A. Baker and M. Maroncelli, J. Phys. Chem. B, 2007, 111, 4978.

    Article  CAS  PubMed  Google Scholar 

  32. Y. Kimura, M. Fukuda, K. Suda and M. Terazima, J. Phys. Chem. B, 2010, 114, 11847.

    Article  CAS  PubMed  Google Scholar 

  33. M. Muramatsu, Y. Nagasawa and H. Miyasaka, J. Phys. Chem. A, 2011, 115, 3886.

    Article  CAS  PubMed  Google Scholar 

  34. J. A. Ingram, R. S. Moog, N. Ito, R. Biswas and M. Maroncelli, J. Phys. Chem. B, 2003, 107, 5926.

    Article  CAS  Google Scholar 

  35. S. Arzhantsev, N. Ito, M. Heitz and M. Maroncelli, Chem. Phys. Lett., 2003, 381, 278.

    Article  CAS  Google Scholar 

  36. E. W. J. Castner, C. J. Margulis, M. Maroncelli and J. F. Wishart, Annu. Rev. Phys. Chem., 2011, 62, 85.

    Article  CAS  PubMed  Google Scholar 

  37. P. K. Chowdhury, M. Halder, L. Sanders, T. Calhoun, J. L. Anderson, D. W. Armstrong, X. Song and J. W. Petrich, J. Phys. Chem. B, 2004, 108, 10245.

    Article  CAS  Google Scholar 

  38. S. K. Das and M. Sarkar, ChemPhysChem, 2012, 13, 2761.

    Article  PubMed  CAS  Google Scholar 

  39. S. K. Das and M. Sarkar, J. Phys. Chem. B, 2012, 116, 194.

    Article  CAS  PubMed  Google Scholar 

  40. S. K. Das, P. K. Sahu and M. Sarkar, J. Phys. Chem. B, 2013, 117, 636.

    Article  CAS  PubMed  Google Scholar 

  41. S. N. V. K. Aki, J. F. Brennecke and A. Samanta, Chem. Commun., 2001, 413.

    Google Scholar 

  42. A. Samanta, J. Phys. Chem. B, 2006, 110, 13704.

    Article  CAS  PubMed  Google Scholar 

  43. A. Paul and A. Samanta, J. Phys. Chem. B, 2007, 111, 4724.

    Article  CAS  PubMed  Google Scholar 

  44. S. Sarkar, R. Pramanik, C. Ghatak, P. Setua and N. Sarkar, J. Phys. Chem. B, 2010, 114, 2779.

    Article  CAS  PubMed  Google Scholar 

  45. M. Maroncelli, X.-. X. Zhang, M. Liang, D. Roy and N. P. Ernsting, Faraday Discuss., 2012, 154, 409.

    Article  CAS  PubMed  Google Scholar 

  46. S. Arzhantsev, H. Jin, N. Ito and M. Maroncelli, Chem. Phys. Lett., 2006, 417, 524.

    Article  CAS  Google Scholar 

  47. X.-. X. Zhang, J. Breffke, N. P. Ernsting and M. Maroncelli, Phys. Chem. Chem. Phys., 2015, 17, 12949.

    Article  CAS  PubMed  Google Scholar 

  48. R. Jimenez, G. R. Fleming, P. V. Kumar and M. Maroncelli, Nature, 1994, 369, 471.

    Article  CAS  Google Scholar 

  49. H. Jin, G. A. Baker, S. Arzhantsev, J. Dong and M. Maroncelli, J. Phys. Chem. B, 2007, 111, 7291.

    Article  CAS  PubMed  Google Scholar 

  50. D. Roy and M. Maroncelli, J. Phys. Chem. B, 2012, 116, 5951.

    Article  CAS  PubMed  Google Scholar 

  51. N. Ito, S. Arzhantsev, M. Heitz and M. Maroncelli, J. Phys. Chem. B, 2004, 108, 5771.

    Article  CAS  Google Scholar 

  52. P. K. Mandal and A. Samanta, J. Phys. Chem. B, 2005, 109, 15172.

    Article  CAS  PubMed  Google Scholar 

  53. Y. Shim, J. Duan, M. Y. Choi and H. J. Kim, J. Chem. Phys., 2003, 119, 6411.

    Article  CAS  Google Scholar 

  54. M. N. Kobrak and V. Znamenskiy, Chem. Phys. Lett., 2004, 395, 127.

    Article  CAS  Google Scholar 

  55. E. Bart, A. Meltsin and D. Huppert, J. Phys. Chem., 1994, 98, 3295.

    Article  CAS  Google Scholar 

  56. E. Bart, A. Meltsin and D. Huppert, J. Phys. Chem., 1994, 98, 10819.

    Article  CAS  Google Scholar 

  57. E. Bart, A. Meltsin and D. Huppert, Phys. Chem., 1995, 99, 9253.

    Article  CAS  Google Scholar 

  58. S. Sarkar, S. Mandal, C. Ghatak, V. G. Rao, S. Ghosh and N. Sarkar, J. Phys. Chem. B, 2012, 116, 1335.

    Article  CAS  PubMed  Google Scholar 

  59. S. N. Baker, G. A. Baker, C. A. Munson, F. Chen, E. J. Bukowski, A. N. Cartwright and F. V. Bright, Ind. Eng. Chem. Res., 2003, 42, 6457.

    Article  CAS  Google Scholar 

  60. A. Paul and A. Samanta, J. Phys. Chem. B, 2008, 112, 947.

    Article  CAS  PubMed  Google Scholar 

  61. D. Chakrabarty, A. Chakraborty, D. Seth and N. Sarkar, J. Phys. Chem. A, 2005, 109, 1764.

    Article  CAS  PubMed  Google Scholar 

  62. H. V. R. Annapureddy, Z. Hu, J. Xia and C. J. Margulis, J. Phys. Chem. B, 2008, 112, 1770.

    Article  CAS  PubMed  Google Scholar 

  63. K. A. Fletcher and S. Pandey, Appl. Spectrosc., 2002, 56, 266.

    Article  CAS  Google Scholar 

  64. K. A. Fletcher and S. Pandey, Appl. Spectrosc., 2002, 56, 1498.

    Article  CAS  Google Scholar 

  65. K. A. Fletcher and S. Pandey, J. Phys. Chem. B, 2003, 107, 13532.

    Article  CAS  Google Scholar 

  66. R. Pramanik, V. G. Rao, S. Sarkar, C. Ghatak, P. Setua and N. Sarkar, J. Phys. Chem. B, 2009, 113, 8626.

    Article  CAS  PubMed  Google Scholar 

  67. D. Chakrabarty, D. Seth, A. Chakraborty and N. Sarkar, J. Phys. Chem. B, 2005, 109, 5753.

    Article  CAS  PubMed  Google Scholar 

  68. A. Paul and A. Samanta, J. Phys. Chem. B, 2008, 112, 947.

    Article  CAS  PubMed  Google Scholar 

  69. S. K. Das, D. Majhi, P. K. Sahu and M. Sarkar, RSC Adv., 2015, 5, 41585.

    Article  CAS  Google Scholar 

  70. T. Masaki, K. Nishikawa and H. Shirota, J. Phys. Chem. B, 2010, 114, 6323.

    Article  CAS  PubMed  Google Scholar 

  71. R. Dutta, A. Pyne, D. Mondal and N. Sarkar, ACS Omega, 2018, 3, 314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. M.-L. Horng, J. A. Gardecki and M. Maroncelli, J. Phys. Chem. A, 1997, 101, 1030.

    Article  CAS  Google Scholar 

  73. M. Maroncelli and G. R. Fleming, J. Chem. Phys., 1987, 86, 6221.

    Article  CAS  Google Scholar 

  74. B. Bagchi, D. W. Oxtoby and G. R. Fleming, Chem. Phys., 1984, 86, 257.

    Article  CAS  Google Scholar 

  75. D. Banik, A. Roy, N. Kundu and N. Sarkar, J. Phys. Chem. B, 2015, 119, 9905.

    Article  CAS  PubMed  Google Scholar 

  76. D. Banik, N. Kundu, J. Kuchlyan, A. Roy, C. Banerjee, S. Ghosh and N. Sarkar, J. Chem. Phys., 2015, 142, 054505.

    Article  PubMed  CAS  Google Scholar 

  77. X. X. Zhang, M. Liang, J. Hunger, R. Buchner and M. Maroncelli, J. Phys. Chem. B, 2013, 117, 15356.

    Article  CAS  PubMed  Google Scholar 

  78. N. Kundu, S. Roy, D. Mukherjee, T. K. Maiti and N. Sarkar, J. Phys. Chem. B, 2017, 121, 8162.

    Article  CAS  PubMed  Google Scholar 

  79. V. Chmyrov, T. Spielmann, H. Hevekerl and J. Widengren, Anal. Chem., 2015, 87, 5690.

    Article  CAS  PubMed  Google Scholar 

  80. A. Chowdhury, S. S. Mojumdar, A. Choudhury, R. Banerjee, K. P. Das, D. K. Sasmal and K. Bhattacharyya, J. Chem. Phys., 2012, 136, 155101.

    Article  PubMed  CAS  Google Scholar 

  81. Fluorescence Microscopy: From Principles to Biological Applications. Edited by Ulrich Kubitscheck, http://www.wiley.com/wiley-Blackwell.

  82. A. D. Becke, J. Chem. Phys., 1993, 98, 5648.

    Article  CAS  Google Scholar 

  83. C. Lee, W. Yang and R. G. Parr, Phys. Rev. B: Condens. Matter Mater. Phys., 1988, 37, 785.

    Article  CAS  Google Scholar 

  84. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Peralta Jr., F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT, 2013.

    Google Scholar 

  85. A. Bondi, J. Phys. Chem., 1964, 68, 441.

    Article  CAS  Google Scholar 

  86. A. Mele, C. D. Tran and S. H. D. P. Lacerda, Angew. Chem., Int. Ed., 2003, 42, 4364.

    Article  CAS  Google Scholar 

  87. M. Moreno, F. Castiglione, A. Mele, C. Pasqui and G. Raos, J. Phys. Chem. B, 2008, 112, 7826.

    Article  CAS  PubMed  Google Scholar 

  88. G. Dimitrakis, I. J. Villar-Garcia, E. Lester, P. Licence and S. Kingman, Phys. Chem. Chem. Phys., 2008, 10, 2947.

    Article  CAS  PubMed  Google Scholar 

  89. L. Zhang, J. Han, R. Wang, X. Qiu and J. Ji, J. Chem. Eng. Data, 2007, 52, 1401.

    Article  CAS  Google Scholar 

  90. H. C. Chang, J. C. Jiang, Y. C. Liou, C. H. Hung, T. Y. Lai and S. H. Lin, J. Chem. Phys., 2008, 129, 044506.

    Article  PubMed  CAS  Google Scholar 

  91. Y. Huo, S. Xia and P. Ma, J. Chem. Eng. Data, 2008, 53, 2535.

    Article  CAS  Google Scholar 

  92. E. R. Johnson, S. Keinan, P. Mori-Sanchez, J. Contreras-Garcia, A. J. Cohen and W. Yang, J. Am. Chem. Soc., 2010, 132, 6498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. J. Contreras-Garcia, E. R. Johnson, S. Keinan, R. Chaudret, J.-P. Piquemal, D. N. Beratan and W. Yang, J. Chem. Theory Comput., 2011, 7, 625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. G. Arfken, Mathematical Methods for Physicists, Academic Press, Orlando, 1985.

    Google Scholar 

  95. R. F. W. Bader and H. Essen, J. Chem. Phys., 1984, 80, 1943.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

N. S. is thankful to SERB, Department of Science and Technology (DST), Government of India, for generous research grants. P. K. C. thanks DST, New Delhi for the J. C. Bose National Fellowship. R. D. and A. P. thank the CSIR for their research fellowships. G. J. and D. M. are thankful to the IITKGP, Kharagpur for their research fellowships.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pratim K. Chattaraj or Nilmoni Sarkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutta, R., Jana, G., Mondal, D. et al. The role of viscosity in various dynamical processes of different fluorophores in ionic liquid— cosolvent mixtures: a femtosecond fluorescence upconversion study. Photochem Photobiol Sci 18, 1359–1372 (2019). https://doi.org/10.1039/c9pp00045c

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c9pp00045c

Navigation