Skip to main content
Log in

The chiral photocycloaddition of a cyclohexenone derivative with a chiral alkene. A DFT study

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The photochemical reaction of 3-carboxymethylcyclohexenone with a cyclohexene bearing a chiral auxiliary group has been examined in a DFT study. GIAO simulation of the NMR spectra (DFT/B3LYP/6-311G++(d,2p) level of theory) is not in agreement with the syn–anti–syn product described in the literature for this reaction but is in agreement with the formation of a syn–cis–syn dimer. The analysis of the frontier orbitals involved in this reaction shows that the main interaction is that between the HOMO of the alkene and the LSOMO of the carbonyl compound in its first excited triplet state. The atomic coefficients do not allow a frontier orbital control of the regiochemistry of the reaction. The study of the possible biradical intermediates and the energies of the transition states involved agree with the formation of a syn–cis–syn biradical intermediate. The coupling of the radical carbon atoms in this biradical intermediate allows the obtainment of a more stable dimer. Furthermore, the coupling reaction occurs via a conrotatory process that is able to give only one of the possible syn–cis–syn dimers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. G. Ciamician and P. Silber, Chemische Lichtwirkungen, Ber. Dtsch. Chem. Ges., 1908, 41, 1928–1935.

    Article  CAS  Google Scholar 

  2. M. D’Auria, At the origin of photochemistry. The dimerization of cynnamic acid derivatives, EPA Newsl., 2015, 88, 150–156.

    Google Scholar 

  3. P. Margaretha, Photocycloaddition of cycloalk-2-enones to alkenes, in Synthetic Organic Photochemistry, ed. A. G. Griesbeck and J. Mattay, Marcel Dekker, New York, 2005, pp. 211–237; A. G. Griesbeck and M. Franke, Photochemical Cycloadditions, in Compehensive Organic Synthesis, ed. P. Knochel and G. A. Molander, Elsevier, Oxford, 2nd edn, 2014, vol. 5, pp. 129–158.

    Google Scholar 

  4. J.-P. Pete, [2+2]-Photocycloaddition reactions of cyclopentenones with alkenes, in CRC Handbook of Organic Photochemistry and Photobiology, ed. W. Horspool and F. Lenci, CRC Press, Boca Raton, 2nd edn, 2004, pp. 71-1–71-14.

  5. D. I. Shuster, Mechanistic issues in [2+2]-photocycloacycloadditions of cyclic enones to alkenes, in CRC Handbook of Organic Photochemistry and Photobiology, ed. W. Horspool and F. Lenci, CRC Press, Boca Raton, 2nd edn, 2004, pp. 72-1–72-24.

  6. R. M. Bowman, C. Calvo, J. J. McCullough, P. W. Rasmussen and F. F. Snyder, Photoadditions of 2-cyclohexenone derivatives to cyclopentene. Stereochemistry, J. Org. Chem., 1972, 37, 2084–2090.

    Article  CAS  Google Scholar 

  7. G. L. Lange, M. G. Organ and M. Lee, Reversal of regioselectivity with increasing ring size of alkene component in [2+2] photoadditions, Tetrahedron Lett., 1990, 31, 4689–4692.

    Article  CAS  Google Scholar 

  8. H. I. Omar, Y. Odo, Y. Shigemitsu, T. Shimo and K. Somekawa, Transition state analysis on regioselectivity in [2+2] photocycloaddition reactions of substituted 2-cyclohexenone with cycloalkenecarboxylates, Tetrahedron, 2003, 59, 8099–8105.

    Article  CAS  Google Scholar 

  9. M. D’Auria, Regio- and stereochemistry of the [2+2]-cyclo-addition reaction between enones and alkenes. A DFT study, Tetrahedron, 2012, 68, 8699–8703.

    Article  Google Scholar 

  10. G. Zhao, C. Yang, H. Sun, R. Lin and W. Xia, (+)-Camphor Derivative Induced Asymmetric [2+2] Photoaddition Reaction, Org. Lett., 2012, 14, 776–779.

    Article  CAS  Google Scholar 

  11. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09, Revision A.1, Gaussian, Inc., Wallingford, CT, 2009.

    Google Scholar 

  12. R. G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules, Oxford University Press, Oxford, UK, 1989.

    Google Scholar 

  13. M. E. Casida, Time-dependent density-functional response theory for molecules, in Recent Advances in Density Functional Methods, ed. D. P. Chong, World Scientific, Singapore, 1995, vol. 1, pp. 155–192.

    CAS  Google Scholar 

  14. M. E. Casida, C. Jamorski, K. C. Casida and D. R. Salahub, J. Chem. Phys., 1998, 108, 4439–4449.

    Article  CAS  Google Scholar 

  15. A. D. Becke, Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold, J. Chem. Phys., 1993, 98, 5648–5652.

    Article  CAS  Google Scholar 

  16. F. J. London, Quantum theory of interatomic currents in aromatic compounds. Théorie quantique des courants interatomiques dans les combinaisons aromatiques, J. Phys. Radium, 1937, 8, 397–409.

    Article  CAS  Google Scholar 

  17. R. McWeeny, Perturbation theory for the Fock-Dirac density matrix, Phys. Rev., 1962, 126, 1028–1034.

    Article  Google Scholar 

  18. R. Ditchfield, Self-consistent perturbation theory of diamagnetism: I. A gauge-invariant LCAO method for NMR chemical shifts, Mol. Phys., 1974, 27, 789–807.

    Article  CAS  Google Scholar 

  19. K. Wolinski, J. F. Hilton and P. Pulay, Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations, J. Am. Chem. Soc., 1990, 112, 8251–8260.

    Article  CAS  Google Scholar 

  20. J. R. Cheeseman, G. W. Trucks, T. A. Keith and M. J. Frisch, A comparison of models for calculating nuclear magnetic resonance shielding tensors, J. Chem. Phys., 1996, 104, 5497–5509.

    Article  CAS  Google Scholar 

  21. P. A. Leber, A. R. Bogdan, D. C. Powers and J. E. Baldwin, Thermal isomerizations of cis,anti,cis-tricyclo[6.4.0.02,7] dodec-3-ene to trans-, and cis,endo-tricyclo[6.2.2.02,7]dodec-9-ene: diradical conformations and stereochemical outcomes in [1,3] carbon shifts, Tetrahedron, 2007, 63, 6331–6338.

    CAS  Google Scholar 

  22. E. P. da Rocha, H. A. Rodrigues, E. F. F. da Cunha and T. C. Ramalho, Probing kinetic and thermodynamic parameters as well as solvent and substitutent effects on spectroscopic probes of 2-amino-1,4-naphthoquinone derivatives, Comput. Theor. Chem., 2016, 1096, 17–26; F. A. La Porta, T. C. Ramalho, R. T. Santiago, M. V. J. Rocha and E. F. F. da Cunha, Orbital signatures as a descriptor of regioselectivity and chemical reactivity: the role of frontier orbitals on 1,3-dipolar cycloadditions, J. Phys. Chem. A, 2011, 115, 824–833; R. R. da Silvam, T. C. Ramalho, J. M. Santos and J. D. Figueroa-Villar, On the limits of highest-occupied molecular orbital driven reactions: the frontier effective-for-reaction molecular orbital concept, J. Phys. Chem. A, 2006, 110, 1031–1040.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio D’Auria.

Additional information

Dedicated to the memory of Prof. Ugo Mazzucato.

Electronic supplementary information (ESI) available: Z-Matrix and Cartesian coordinates of the optimized structures; simulated NMR spectra of 13 and 17; frequencies of the transition states. See DOI: 10.1039/c8pp00521d

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Auria, M. The chiral photocycloaddition of a cyclohexenone derivative with a chiral alkene. A DFT study. Photochem Photobiol Sci 18, 2191–2198 (2019). https://doi.org/10.1039/c8pp00521d

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c8pp00521d

Navigation