Skip to main content
Log in

Effects of water availability and UV radiation on silicon accumulation in the C4 crop proso millet

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Proso millet (Panicum miliaceum L.) is an annual thermophilic, drought-resistant, short-season C4 grass that is suitable for growing under the present changing meteorological conditions. However, water shortage can reduce plant production and hinder mineral nutrition in plants, including silicon, which is of crucial importance for grasses. Ultraviolet radiation can mitigate the impacts of water shortage, and therefore we examined the effects of moderate water shortage and reduced ultraviolet radiation on different leaf traits, including leaf levels of silicon and other elements, and plant biomass production. Moderate water shortage and ambient ultraviolet radiation did not affect the contents of photosynthetic pigments, while they reduced stomata density. Water shortage significantly decreased leaf light reflectance in the ultraviolet and violet regions. Leaf silicon, calcium, phosphorus, and sulphur levels were significantly lower with reduced water availability and significantly higher with reduced ultraviolet radiation. Leaf silicon levels ranged from 1.5% to 2.5% of leaf dry mass, with leaf calcium levels from 0.3% to 0.6%. Except for chlorine and potassium, the levels of these elements in the leaves were significantly positively related (p ≤ 0.05) to soil moisture levels. Water availability, but not ultraviolet radiation, significantly reduced living leaf biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Trembath-Reichert, J. P. Wilson, S. E. McGlynn and W. W. Fischer, Four hundred million years of silica biomineralization in land plants, Proc. Natl. Acad. Sci. U. S. A., 2015, 112, 5449–5454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. S. E. Melzer, A. K. Knapp, K. P. Kirkman, M. D. Smith, J. M. Blair and E. F. Kelly, Fire and grazing impacts on silica production and storage in grass dominated ecosystems, Geochem., 2010, 97, 263–278.

    CAS  Google Scholar 

  3. E. Epstein, The anomaly of silicon in plant biology, Proc. Natl. Acad. Sci. U. S. A., 1994, 91, 11–17.

  4. E. Epstein and A. J. Bloom, Mineral Nutrition of Plants: Principles and Perspectives, Sinauer Associates, Inc., Sunderland, 2nd edn, 2005.

  5. L. H. P. Jones and K. A. Handreck, Silica in soils, plants, and animals, Adv. Agron., 1967, 19, 107–149.

    Article  CAS  Google Scholar 

  6. H. Motomura, T. Fujii and M. Suzuki, Silica deposition in abaxial epidermis before the opening of leaf blades of Pleioblastus chino (Poaceae, Bambusoideae), Ann. Bot., 2006, 97, 513–519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. O. Markovich, S. Kumar, D. Cohen, S. Addadi, E. Fridman and R. Elbaum, Silicification in leaves of sorghum mutant with low silicon accumulation, Silicon, 2015, DOI: 10.1007/s12633-015-9348-x.

  8. M. Nikolic, N. Nikolic, Y. Liang, E. A. Kirkby and V. Römheld, Germanium-68 as an adequate tracer for silicon transport in plants. Characterization of silicon uptake in different crop species, Plant Physiol., 2007, 143, 495–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. E. A. H. Pilon-Smits, C. F. Quinn, W. Tapken, M. Malagoli and M. Schiavon, Physiological functions of beneficial elements, Curr. Opin. Plant Biol., 2009, 12, 267–274.

    Article  CAS  PubMed  Google Scholar 

  10. J. F. Ma and E. Takahashi, Soil, Fertilizer, and Plant Silicon Research in Japan, Elsevier, Amsterdam, 1st edn, 2002.

  11. M. H. Adatia and R. T. Besford, The effects of silicon on cucumber plants grown in recirculating nutrient solution, Ann. Bot., 1986, 58, 343–351.

    Article  CAS  Google Scholar 

  12. J. F. Ma, Y. Miyake and E. Takahashi, Silicon as a beneficial element for crop plants, in, Silicon in Agriculture, ed. L. E. Datnoff, G. H. Snyder and G. H. Korndörfer, Elsevier Science, Amsterdam, 2001, pp. 17–39.

  13. J. Kang, W. Zhao, P. Su, M. Zhao and Z. Yang, Sodium (Na+) and silicon (Si) coexistence promotes growth and enhances drought resistance of the succulent xerophyte Haloxylon ammodendron, Soil Sci. Plant Nutr., 2014, 60, 659–669.

    Article  CAS  Google Scholar 

  14. A. R. Yeo, S. A. Flowers, G. Rao, K. Welfare, N. Senanayake and T. J. Flowers, Silicon reduces sodium uptake in rice (Oryza sativa L.) in saline conditions and this is accounted for by a reduction in the transpirational bypass flow, Plant, Cell Environ., 1999, 22, 559–565.

    Article  CAS  Google Scholar 

  15. A. Lux, M. Luxová, T. Hattori, S. Inanaga and Y. Sugimoto, Silicification in sorghum (Sorghum bicolor) cultivars with different drought tolerance, Physiol. Plant., 2002, 115, 87–92.

    Article  CAS  PubMed  Google Scholar 

  16. J. Schoelynck, K. Bal, H. Backx, T. Okruszko, P. Meire and E. Struyf, Silica uptake in aquatic and wetland macrophytes: a strategic choice between silica, lignin and cellulose?, New Phytol., 2010, 186, 385–391.

  17. K. Klančnik, K. Vogel-Mikuš and A. Gaberščik, Silicified structures affect leaf optical properties in grasses and sedge, J. Photochem. Photobiol., B, 2014a, 130, 1–10.

  18. K. Klančnik, K. Vogel-Mikuš, M. Kelemen, P. Vavpetič, P. Pelicon, P. Kump, D. Jezeršek, A. Gianoncelli and A. Gaberščik, Leaf optical properties are affected by the location and type of deposited biominerals, J. Photochem. Photobiol., B, 2014b, 140, 276–285.

  19. S. Mitsui and H. Takatoh, Nutritional study of silicon in graminaceous crops (part 1), Soil Sci. Plant Nutr., 1963, 9, 7–11.

    Article  Google Scholar 

  20. H. Marschner, H. Oberle, I. Cakmak and V. Römheld, Growth enhancement by silicon in cucumber (Cucumis sativus) plants depends on imbalance in phosphorus and zinc supply, Plant Soil, 1990, 124, 211–219.

    Article  CAS  Google Scholar 

  21. B. S. Tubana, T. Babu and L. E. Datnoff, A review of silicon in soils and plants and its role in US agriculture: history and future perspectives, Soil Sci., 2016, 181, 393–411.

    Article  CAS  Google Scholar 

  22. D. D. Baltensperger, Progress with proso, pearl and other millets, in, Trends in New Crops and New Uses, ed. J. Janick and A. Whipkey, ASHS Press, Alexandria, 2002, pp. 100–103.

  23. S. Sen Mandi, Natural UV Radiation in Enhancing Survival Value and Quality of Plants, Springer India, New Delhi, 2016.

  24. S. Nogués, D. J. Allen, J. I. L. Morison and N. R. Baker, Ultraviolet-B radiation effects on water relations, leaf development, and photosynthesis in droughted pea plants, Plant Physiol., 1998, 117, 173–181.

    Article  PubMed  PubMed Central  Google Scholar 

  25. A. Frew, L. A. Weston, O. L. Reynolds and G. M. Gurr, The role of silicon in plant biology: a paradigm shift in research approach, Ann. Bot., 2018, 121, 1265–1273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. S. Faisal, K. L. Callis, M. Slot and K. Kitajima, Transpiration-dependent passive silica accumulation in cucumber (Cucumis sativus) under varying soil silicon availability, Botany, 2012, 90, 1058–1064.

    Article  CAS  Google Scholar 

  27. H. K. Lichtenthaler and C. Buschmann, Extraction of photosynthetic tissues: chlorophylls and carotenoids, Current Protocols in Food Analytical Chemistry, 2001a, vol. 1, pp. 165–170.

  28. H. K. Lichtenthaler and C. Buschmann, Chlorophylls and carotenoids: measurement and characterization by UV-VIS spectroscopy, Current Protocols in Food Analytical Chemistry, 2001b, vol. 1, pp. 171–178.

  29. H. Drumm and H. Mohr, The mode of interaction between blue (UV) light photoreceptor and phytochrome in anthocyanin formation of the Sorghum seedling, Photochem. Photobiol., 1978, 27, 241–248.

    Article  CAS  Google Scholar 

  30. M. M. Caldwell, Solar ultraviolet radiation as an ecological factor for alpine plants, Ecol. Monogr., 1968, 38, 243–268.

  31. U. Schreiber, M. Kühl, I. Klimant and H. Reising, Measurement of chlorophyll fluorescence within leaves using a modified PAM fluorometer with a fiber-optic microprobe, Photosynth. Res., 1996, 47, 103–109.

    Article  CAS  PubMed  Google Scholar 

  32. M. Nečemer, P. Kump, J. Scančar, R. Jaćimović, J. Simčič, P. Pelicon, M. Budnar, Z. Jeran, P. Pongrac, M. Regvar and K. Vogel-Mikuš, Application of X-ray fluorescence analytical techniques in phytoremediation and plant biology studies, Spectrochim. Acta, Part B, 2008, 63, 1240–1247.

    Article  Google Scholar 

  33. B. Vekemans, K. Janssens, L. Vincze, F. Adams and P. Vanespen, Analysis of X-ray spectra by iterative least squares (AXIL): new developments, X-Ray Spectrom., 1994, 23, 278–285.

    Article  CAS  Google Scholar 

  34. P. Kump, M. Nečemer, Z. Rupnik, P. Pelicon, D. Ponikvar, K. Vogel-Mikuš, M. Regvar and P. Pongrac, Improvement of the XRF quantification and enhancement of the combined applications by EDXRF and micro-PIXE, in, Integration of Nuclear Spectrometry Methods as a New Approach to Material Research, IAEA, Vienna, 2011, pp. 101–109.

  35. Y. Li, Y. Zu, L. Bao and Y. He, The responses of spatial situation, surface structure characteristics of leaves and sensitivity of two local rice cultivars to enhanced UV-B radiation under terraced agricultural ecosystem, Acta Physiol. Plant., 2014, 36, 2755–2766.

    Article  CAS  Google Scholar 

  36. S. Kang, Y. Zhang, Y. Zhang, J. Zou, Q. Yang and T. Li, Ultraviolet-A radiation stimulates growth of indoor cultivated tomato (Solanum lycopersicum) seedlings, HortScience, 2018, 53, 1429–1433.

    Article  Google Scholar 

  37. F. Vandenbussche, N. Yu, W. Li, L. Vanhaelewyn, M. Hamshou, D. Van Der Straeten and G. Smagghe, An ultraviolet B condition that affects growth and defense in Arabidopsis, Plant Sci., 2018, 268, 54–63.

    Article  CAS  PubMed  Google Scholar 

  38. E. Bacelar, J. Moutinho-Pereira, H. Ferreira and C. Correia, Enhanced ultraviolet-B radiation affect growth, yield and physiological processes on triticale plants, Procedia Environ. Sci., 2015, 29, 219–220.

    Article  Google Scholar 

  39. A. J. Visser, M. Tosserams, M. W. Groen, G. Kalis, R. Kwant, G. W. H. Magendans and J. Rozema, The combined effects of CO2 concentration and enhanced UV-B radiation on faba bean. 3. Leaf optical properties, pigments, stomatal index and epidermal cell density, Plant Ecol., 1997, 128, 209–222.

    Article  Google Scholar 

  40. D. C. Gitz III, L. Liu-Gitz, S. J. Britz and J. H. Sullivan, Ultraviolet-B effects on stomatal density, water-use efficiency, and stable carbon isotope discrimination in four glasshouse-grown soybean (Glyicine max) cultivars, Environ. Exp. Bot., 2005, 53, 343–355.

    Article  Google Scholar 

  41. W. Larcher, Physiological Plant Ecology: Ecophysiology and Stress Physiology of Functional Groups, Springer, Berlin, 4th edn, 2003.

  42. J. Polania, I. M. Rao, C. Cajiao, M. Grajales, M. Rivera, F. Velasquez, B. Raatz and S. E. Beebe, Shoot and root traits contribute to drought resistance in recombinant inbred lines of MD 23–24 × SEA 5 of common bean, Front. Plant Sci., 2017, 8, 296.

    Article  PubMed  PubMed Central  Google Scholar 

  43. S. Deepak, G. Manjunath, S. Manjula, S. Niranjan-Raj, N. P. Geetha and H. S. Shetty, Involvement of silicon in pearl millet resistance to downy mildew disease and its interplay with cell wall proline/hydroxyproline-rich glyco-proteins, Australas. Plant Pathol., 2008, 37, 498–504.

  44. L. Hernandez-Apaolaza, Can silicon partially alleviate micronutrient deficiency in plants? A review, Planta, 2014, 240, 447–458.

  45. M. Goto, H. Ehara, S. Karita, K. Takabe, N. Ogawa, Y. Yamada, S. Ogawa, M. S. Yahaya and O. Morita, Protective effect of silicon on phenolic biosynthesis and ultraviolet spectral stress in rice crop, Plant Sci., 2003, 164, 349–356.

    Article  CAS  Google Scholar 

  46. X. Shen, X. Li, Z. Li, J. Li, L. Duan and A. E. Eneji, Growth, physiological attributes and antioxidant enzyme activities in soybean seedlings treated with or without silicon under UV-B radiation stress, J. Agron. Crop Sci., 2010, 196, 431–439.

    Article  CAS  Google Scholar 

  47. M. He and F. A. Dijkstra, Drought effect on plant nitrogen and phosphorus: a meta-analysis, New Phytol., 2014, 204, 924–931.

    Article  CAS  PubMed  Google Scholar 

  48. M. Yue, Y. Li and X. Wang, Effects of enhanced ultraviolet-B radiation on plant nutrients and decomposition of spring wheat under field conditions, Environ. Exp. Bot., 1998, 40, 187–196.

    Article  CAS  Google Scholar 

  49. V. Alexieva, I. Sergiev, S. Mapelli and E. Karanov, The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat, Plant, Cell Environ., 2001, 24, 1337–1344.

    Article  CAS  Google Scholar 

  50. J. M. Basahi, I. M. Ismail and I. A. Hassan, Effects of enhanced UV-B radiation and drought stress on photosynthetic performance of lettuce (Lactuca sativa L. Romaine) plants, Annu. Res. Rev. Biol., 2014, 4, 1739–1756.

    Article  Google Scholar 

  51. M. L. Falcone Ferreyra, S. P. Rius and P. Casati, Flavonoids: biosynthesis, biological functions, and biotechnological applications, Front. Plant Sci., 2012, 3, 222.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. G. Vitkauskaitė and L. Venskaitytė, Differences between C3 (Hordeum vulgare L.) and C4 (Panicum miliaceum L.) plants with respect to their resistance to water deficit, Žemdirbystė-Agriculture, 2011, 98, 349–356.

  53. S. H. Taylor, B. S. Ripley, F. I. Woodward and C. P. Osborne, Drought limitation of photosynthesis differs between C3 and C4 grass species in a comparative experiment, Plant, Cell Environ., 2011, 34, 65–75.

    Article  CAS  Google Scholar 

  54. J. Schaller, C. Brackhage, E. Bäucker and E. G. Dudel, UV-screening of grasses by plant silica layer?, J. Biosci., 2013, 38, 413–416.

  55. S. Kumar, M. Soukup and R. Elbaum, Silicification in grasses: variation between different cell types, Front. Plant Sci., 2017, 8, 438, DOI: 10.3389/fpls.2017.00438.

  56. D. G. Bielenberg and H. BassiriRad, Nutrient acquisition of terrestrial plants in a changing climate, in, Nutrient Acquisition by Plants: An Ecological Perspective, Ecological Studies 181, ed. H. BassiriRad, Springer, Berlin, 2005, pp. 311–329.

  57. R. R. L. Atkinson, E. J. Mockford, C. Bennett, P.-A. Christin, E. L. Spriggs, R. P. Freckleton, K. Thompson, M. Rees and C. P. Osborne, C4 photosynthesis boosts growth by altering physiology, allocation and size, Nat. Plants, 2016, 2, 16038.

    Article  CAS  PubMed  Google Scholar 

  58. C. L. Angelo and S. Pau, Root biomass and soil, δ13C in C3 and C4 grasslands along a precipitation gradient, Plant Ecol., 2015, 216, 615–627.

    Article  Google Scholar 

  59. S. Gepstein and B. R. Glick, Strategies to ameliorate abiotic stress-induced plant senescence, Plant Mol. Biol., 2013, 82, 623–633.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alenka Gaberščik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grašič, M., Malovrh, U., Golob, A. et al. Effects of water availability and UV radiation on silicon accumulation in the C4 crop proso millet. Photochem Photobiol Sci 18, 375–386 (2019). https://doi.org/10.1039/c8pp00517f

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c8pp00517f

Navigation