Skip to main content
Log in

UV-A screening in Cladophora sp. lowers internal UV-A availability and photoreactivation as compared to non-UV screening in Ulva intestinalis

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

In the Baltic Sea, two co-occurring green macroalgae Cladophora sp. and Ulva intestinalis grow in the upper eulittoral. Due to regular and high sunlight exposure in their habitat, both species need resistance mechanisms to protect themselves against ultraviolet-B (UV-B)-induced DNA damage. While Cladophora sp. possesses efficient screening of UV-B and ultraviolet-A (UV-A) radiation, U. intestinalis was recently shown to have higher DNA repair by UVA-driven photoreactivation than Cladophora sp. [F. Pescheck and W. Bilger, Mar. Biol., 2018, 165, 132]. In the present study, the hypothesis that the screening of UV-A radiation limits internal UV-A availability for photoreactivation in Cladophora sp. was tested. Both species had identical and much lower fractions of damaged DNA when sampled in situ under direct sunlight as expected based on a photo-physical prediction. To quantify the effect of UV-A screening spectrally and physiologically, in vivo UV screening spectra were determined and the UV-A photon flux dependency of photoreactivation was investigated for both species. Identical intrinsic photoreactivation rates were revealed by the applied correction for internal UV-A photon flux density and under irradiation with visible radiation which is not screened by the UV absorbing compounds in Cladophora sp. Natural sunlight was weighted with in vivo action spectra for DNA damage induction and light-dependent repair. The resulting spectrum was further corrected for the apparent UV screening spectra of both species to calculate the species-specific internal ratios of DNA damaging and photoreactivating photons. This photophysical modelling improves the understanding of UV damage and tolerance mechanisms in the two co-occurring green macroalgae under solar irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Vass, A. Szilard and C. Sicora, in, Handbook of photosynthesis, ed. M. Pessaraki, Marcel Dekker Inc., New York, 2nd edn, 2005, pp. 827–843.

    Google Scholar 

  2. A. B. Britt, Repair of DNA damage induced by solar UV, Photosynth. Res., 2004, 81, 105–112.

  3. D. Verdaguer, M. A. K. Jansen, L. Llorens, L. O. Morales and S. Neugart, UV-A radiation effects on higher plants: Exploring the known unknown, Plant Sci., 2017, 255, 72–81.

    Article  CAS  Google Scholar 

  4. J. Cadet, S. Mouret, J.-L. Ravanat and T. Douki, Photoinduced damage to cellular DNA: direct and photosensitized reactions, Photochem. Photobiol., 2012, 88, 1048–1065.

    Article  CAS  Google Scholar 

  5. F. E. Quaite, B. M. Sutherland and J. C. Sutherland, Action spectrum for DNA damage in Alfalfa lowers predicted impact of ozone depletion, Nature, 1992, 358, 576–578.

    Article  CAS  Google Scholar 

  6. W. H. van de Poll, D. Hanelt, K. Hoyer, A. G. J. Buma and A. M. Breeman, Ultraviolet-B-induced cyclobutane-pyrimidine dimer formation and repair in arctic marine macrophytes, Photochem. Photobiol., 2002, 76, 493–500.

    Article  Google Scholar 

  7. K. Malhotra, S. Kim and A. Sancar, Characterization of a medium wavelength type DNA photolyase - Purification and properties of photolyase from, Bacillus firmus, Biochemistry, 1994, 33, 8712–8718.

  8. A. Sancar, Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors, Chem. Rev., 2003, 103, 2203–2237.

  9. E. Cocquyt, H. Verbruggen, F. Leliaert and O. De Clerck, Evolution and cytological diversification of the green seaweeds (Ulvophyceae), Mol. Biol. Evol., 2010, 27, 2052–2061.

    Article  CAS  Google Scholar 

  10. S. Kiontke, P. Gnau, R. Haselsberger, A. Batschauer and L.-O. Essen, Structural and evolutionary aspects of antenna chromophore usage by class II photolyases, J. Biol. Chem., 2014, 289, 19659–19669.

    Article  CAS  Google Scholar 

  11. Y. Takeuchi, M. Murakami, N. Nakajima, N. Kondo and O. Nikaido, The photorepair and photoisomerisation of DNA lesions in etiolated cucumber cotyledons after irradiation by UV-B depends on wavelength, Plant Cell Physiol., 1998, 39, 745–750.

    Article  CAS  Google Scholar 

  12. A.-L. Dany, T. Douki, C. Triantaphylides and J. Cadet, Repair of the main UV-induced thymine dimeric lesions within, Arabidopsis thaliana DNA: evidence for the major involvement of photoreactivation pathways, J. Photochem. Photobiol. B, 2001, 65, 127–135.

    Article  CAS  Google Scholar 

  13. L. A. Díaz-Ramos, A. O’Hara, S. Kanagarajan, D. Farkas, Å. Strid and G. I. Jenkins, Difference in the action spectra for UVR8 monomerisation and HY5 transcript accumulation in Arabidopsis, Photochem. Photobiol. Sci., 2018, 17, 1108–1117.

    Article  Google Scholar 

  14. G. Agati, G. Stefano, S. Biricolti and M. Tattini, Mesophyll distribution of “antioxidant” flavonoid glycosides in, Ligustrum vulgare leaves under contrasting sunlight irradiance, Ann. Bot., 2009, 104, 853–861.

    Article  CAS  Google Scholar 

  15. W. Bilger, L. Schreiber and U. Schreiber, Measurement of leaf epidermal transmittance of UV-radiation by chlorophyll fluorescence, Physiol. Plant., 1997, 101, 754–763.

    Article  CAS  Google Scholar 

  16. G. Agati, Z. G. Cerovic, P. Pinelli and M. Tattini, Light-induced accumulation of ortho-dihydroxylated flavonoids as non-destructively monitored by chlorophyll fluorescence excitation techniques, Environ. Exp. Bot., 2011, 73, 3–9.

    Article  CAS  Google Scholar 

  17. H. Hada, J. Hidema, M. Maekawa and T. Kumagai, Higher amounts of anthocyanins and UV-absorbing compounds effectively lowered CPD photorepair in purple rice (Oryza sativa L.), Plant, Cell Environ., 2003, 26, 1691–1701.

    Article  CAS  Google Scholar 

  18. H. S. Kang, J. Hidema and T. Kumagai, Effects of light environment during culture on UV-induced cyclobutyl pyrimidine dimers and their photorepair in rice (Oryza sativa L.), Photochem. Photobiol., 1998, 68, 71–77.

  19. R. Schmitz-Hoerner and G. Weissenböck, Contribution of phenolic compounds to the UV-B screening capacity of developing barley primary leaves in relation to DNA damage and repair under elevated UV-B levels, Phytochemistry, 2003, 64, 243–255.

    Article  CAS  Google Scholar 

  20. F. Garcia-Pichel and R. W. Castenholz, Occurrence of UV-absorbing, mycosporine-like compounds among cyanobacterial isolates and an estimate of their screening capacity, Appl. Environ. Microbiol., 1993, 59, 163–169.

  21. W. H. van de Poll, A. Eggert, A. G. J. Buma and A. M. Breeman, Effects of UV-B-induced DNA damage and photoinhibition on growth of temperate marine red macrophytes: Habitat-related differences in UV-B tolerance, J. Phycol., 2001, 37, 30–37.

  22. E. Pérez-Rodríguez, J. Aguilera and F. L. Figueroa, Tissular localization of coumarins in the green alga, Dasycladus vermicularis (Scopoli) Krasser: a photoprotective role?, J. Exp. Bot., 2003, 54, 1093–1100.

    Article  Google Scholar 

  23. F. Pescheck, K. Bischof and W. Bilger, Screening of ultra-violet-A and ultraviolet-B radiation in marine green macro-algae (Chlorophyta), J. Phycol., 2010, 46, 444–455.

    Article  CAS  Google Scholar 

  24. F. Pescheck and W. Bilger, Compensation of lack of UV screening by cellular tolerance in green macroalgae (Ulvophyceae) from the upper eulittoral, Mar. Biol., 2018, 165, 132.

    Article  Google Scholar 

  25. F. Pescheck, K. T. Lohbeck, M. Y. Roleda and W. Bilger, UVB-induced DNA and photosystem II damage in two intertidal green macroalgae: distinct survival strategies in UV-screening and non-screening Chlorophyta, J. Photochem. Photobiol., B, 2014, 132, 85–93.

    Article  CAS  Google Scholar 

  26. K. Bischof, I. Gómez, M. Molis, D. Hanelt, U. Karsten, U. Lüder, M. Roleda, K. Zacher and C. Wiencke, Ultraviolet radiation shapes seaweed communities, Rev. Environ. Sci. Bio/Technol., 2006, 5, 141–166.

    Article  CAS  Google Scholar 

  27. F. Pescheck, H. Campen, L. Nichelmann and W. Bilger, Relative sensitivity of DNA and photosystem II in, Ulva intestinalis (Chlorophyta) under natural solar irradiation, Mar. Ecol.: Prog. Ser., 2016, 555, 95–107.

  28. K. Bischof, G. Peralta, G. Kräbs, W. H. van de Poll, J. L. Pérez-Lloréns and A. M. Breeman, Effects of solar UV-B radiation on canopy structure of Ulva communities from southern Spain, J. Exp. Bot., 2002, 53, 2411–2421.

    Article  CAS  Google Scholar 

  29. A. Britt and E. L. Fiscus, Growth responses of Arabidopsis DNA repair mutants to solar irradiation, Physiol. Plant., 2003, 118, 183–192.

    Article  CAS  Google Scholar 

  30. E. L. Fiscus, R. Philbeck, A. B. Britt and F. L. Booker, Growth of Arabidopsis flavonoid mutants under solar radiation and UV filters, Environ. Exp. Bot., 1999, 41, 231–245.

    Article  Google Scholar 

  31. J. Hidema, T. Taguchi, T. Ono, M. Teranishi, K. Yamamoto and T. Kumagai, Increase in CPD photolyase activity functions effectively to prevent growth inhibition caused by UVB radiation, Plant J., 2007, 50, 70–79.

    Article  CAS  Google Scholar 

  32. W. M. Waterworth, O. Jiang, C. E. West, M. Nikaido and C. M. Bray, Characterization of Arabidopsis photolyase enzymes and analysis of their role in protection from ultra-violet-B radiation, J. Exp. Bot., 2002, 53, 1005–1015.

    Article  CAS  Google Scholar 

  33. Q. S. Pang and J. B. Hays, UV-B-inducible and temperature-sensitive photoreactivation of cyclobutane pyrimidine dimers in, Arabidopsis thaliana, Plant Physiol., 1991, 95, 536–543.

  34. L. Provasoli, in, Cultures and collections of algae, ed. A. Watanabe and A. Hattori, Japanese Society of Plant Physiology, Tokyo, 1968, pp. 47–74.

  35. F. Pescheck and W. Bilger, High impact of seasonal temperature changes on acclimation of photoprotection and radiation-induced damage in field grown, Arabidopsis thaliana, Plant Physiol. Biochem., 2019, 134, 129–136.

  36. L. Nichelmann and W. Bilger, Quantification of light screening by anthocyanins in leaves of, Berberis thunbergii, Planta, 2017, 246, 1069–1082.

  37. M. Veit, W. Bilger, T. Mühlbauer, W. Brummet and K. Winter, Diurnal changes in flavonoids, J. Plant Physiol., 1996, 148, 478–482.

    Article  CAS  Google Scholar 

  38. C. Musil, Differential effects of elevated ultraviolet-B radiation on the photochemical and reproductive performances of dicotyledonous and monocotyledonous arid environment ephemerals, Plant, Cell Environ., 1995, 18, 844–854.

  39. L. Guidi, C. Brunetti, A. Fini, G. Agati, F. Ferrini, A. Gori and M. Tattini, UV radiation promotes flavonoid biosynthesis, while negatively affecting the biosynthesis and the de-epoxidation of xanthophylls: Consequence for photoprotection?, Environ. Exp. Bot., 2016, 127, 14–25.

    Article  CAS  Google Scholar 

  40. G. Payne, M. Wills, C. Walsh and A. Sancar, Reconstitution of Escherichia coli photolyase with flavins and flavin analogs, Biochemistry, 1990, 29, 5706–5711.

    Article  CAS  Google Scholar 

  41. P. F. Heelis, R. F. Hartman and S. D. Rose, Photoenzymic repair of UV-damaged DNA: a chemist’s perspective, Chem. Soc. Rev., 1995, 24, 289–297.

    Article  CAS  Google Scholar 

  42. S. T. Kim and A. Sancar, Effect of base, pentose, and phos-phodiester backbone structures on binding and repair of pyrimidine dimers by, Escherichia coli DNA photolyase, Biochemistry, 1991, 30, 8623–8630.

    Article  CAS  Google Scholar 

  43. Y. S. Han, S. H. Kang and T. Han, Photosynthesis and photoinhibition of two green macroalgae with contrasting habitats, J. Plant Biol., 2007, 50, 410–416.

    Article  CAS  Google Scholar 

  44. Y. Takeuchi, M. Murakami, N. Nakajima, N. Kondo and O. Nikaido, Induction and repair of damage to DNA in cucumber cotyledons irradiated with UV-B, Plant Cell Physiol., 1996, 37, 181–187.

    Article  CAS  Google Scholar 

  45. S. J. Britz and W. R. Briggs, Circadian rhythms of chloro-plast orientation and photosynthetic capacity in, Ulva, Plant Physiol., 1976, 58, 22–27.

  46. Z. G. Cerovic, G. Samson, F. Morales, N. Tremblay and I. Moya, Ultraviolet-induced fluorescence for plant monitoring: present state and prospects, Agronomie, 1999, 19, 543–578.

  47. D. Karentz, J. E. Cleaver and D. L. Mitchell, Cell survival characteristics and molecular responses of Antarctic phyto-plankton to ultraviolet-B radiation, J. Phycol., 1991, 27, 326–341.

    Article  CAS  Google Scholar 

  48. K. Iwabuchi, J. Hidema, K. Tamura, S. Takagi and I. Hara-Nishimura, Plant nuclei move to escape ultraviolet-induced DNA damage and cell death, Plant Physiol., 2016, 170, 678–685.

    Article  CAS  Google Scholar 

  49. T. Douki, A. Reynaud-Angelin, J. Cadet and E. Sage, Bipyrimidine photoproducts rather than oxidative lesions are the main type of DNA damage involved in the genotoxic effect of solar UVA radiation, Biochemistry, 2003, 42, 9221–9226.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frauke Pescheck.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/c8pp00432c

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pescheck, F. UV-A screening in Cladophora sp. lowers internal UV-A availability and photoreactivation as compared to non-UV screening in Ulva intestinalis. Photochem Photobiol Sci 18, 413–423 (2019). https://doi.org/10.1039/c8pp00432c

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c8pp00432c

Navigation