Skip to main content

Advertisement

Log in

Scope of surface-modified molecular and nanomaterials in gel/liquid forms for developing mechanically flexible DSSCs/QDSSCs

  • PERSPECTIVE
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The advanced lifestyle of the human race involves heavy usage of various gadgets which require copious supplies of energy for uninterrupted functioning. Due to the ongoing depletion of fossil fuels and the accelerating demand for other energy resources, renewable energy sources, especially solar cells, are being extensively explored as viable alternatives. Flexible solar cells have recently emerged as an advanced member of the photovoltaic family; the flexibility and pliability of these photovoltaic materials are advantageous from a practical point of view. Conventional flexible solar cell materials, when dispersed in solvents, are usually volatile and create severe stability issues when incorporated in devices. Recently, non-volatile, less viscous functional molecular liquids/gels have been proposed as potential materials for use in foldable device applications. This perspective article discusses the scope of surface-modified non-volatile molecular and nanomaterials in liquid/gel forms in the manufacturing and deployment of flexible photovoltaics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. S. Lewis and D. G. Nocera, Powering the planet: Chemical challenges in solar energy utilization, Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 15729–15735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. A. J. McEvoy, L. Castaner and T. Markvart, Solar cells: materials, manufacture and operation, Academic Press, 2012.

    Google Scholar 

  3. W. A. Badawy, A Review on Solar Cells from Si-Single Crystals to Porous Materials and Quantum Dots, J. Adv. Res., 2015, 6, 123–132.

    Article  CAS  PubMed  Google Scholar 

  4. M. Kibria, A. Ahammed, S. Sony and F. Hossain, A Review: Comparative studies on different generation solar cells technology, 5th Int. Conf. Enviro. Aspects, Bangladesh, 2014.

  5. A. G. Aberle, Thin-film solar cells, Thin Solid Films, 2009, 517, 4706–4710.

    Article  CAS  Google Scholar 

  6. S. E. Shaheen, D. S. Ginley and G. E. Jabbour, OrganicBased Photovoltaics: Toward Low-Cost Power Generation, MRS Bull., 2005, 30, 10–19.

    Article  CAS  Google Scholar 

  7. B. O’Regan and M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, 1991, 353, 737.

    Article  Google Scholar 

  8. A. T. Arjunan and T. Senthil, Review: Dye-sensitised solar cells, Mater. Technol., 2013, 28, 9–14.

    Article  CAS  Google Scholar 

  9. Z. Yu, Liquid Redox Electrolytes for Dye-Sensitized Solar Cells, Ph.D. Thesis, KTH Royal Institute of Technology, 2012.

    Google Scholar 

  10. M. Pagliaro, R. Ciriminna and G. Palmisano, Flexible Solar Cells, ChemSusChem, 2008, 1, 880–891.

    Article  CAS  PubMed  Google Scholar 

  11. M. K. Singh, in Solar Cells-New Aspects and Solutions, InTech, 2011.

    Google Scholar 

  12. M. B. Schubert and J. H. Werner, Flexible solar cells for clothing, Mater. Today, 2006, 9, 42–50.

    Article  CAS  Google Scholar 

  13. Y. Dkhissi, F. Huang, Y.-B. Cheng and R. A. Caruso, Quasisolid-state dye-sensitized solar cells on plastic substrates, J. Phys. Chem. C, 2014, 118, 16366–16374.

    Article  CAS  Google Scholar 

  14. Y. Han, J. M. Pringle and Y.-B. Cheng, Photovoltaic characteristics and stability of flexible dye-sensitized solar cells on ITO/PEN substrates, RSCAdv., 2014, 4, 1393–1400.

    CAS  Google Scholar 

  15. K. Otte, L. Makhova, A. Braun and I. Konovalov, Flexible Cu(In,Ga)Se2 thin-film solar cells for space application, Thin Solid Films, 2006, 511, 613–622.

    Article  CAS  Google Scholar 

  16. S. S. Shin, W. S. Yang, J. H. Noh, J. H. Suk, N. J. Jeon, J. H. Park, J. S. Kim, W. M. Seong and S. I. Seok, High-performance flexible perovskite solar cells exploiting Zn2SnO4 prepared in solution below 100 °C, Nat. Commun., 2015, 6, 7410.

    Article  CAS  PubMed  Google Scholar 

  17. A. V. Kubarev, E. Breynaert, J. Van Loon, A. Layek, G. Fleury, S. Radhakrishnan, J. Martens and M. B. Roeffaers, Solvent Polarity-Induced Pore Selectivity in H-ZSM-5 Catalysis, ACS Catal., 2017, 7, 4248–4252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. J. O. Onah, J. E. Odeiani and U. Ajima, Influence of Solvent Polarity on the Physio-Chemical Properties and Quantitative Determinations of Tenofovir Disoproxil and Emtricitabine with Chloranilic Acid as Complexing Agent, Open J. Phys. Chem., 2013, 3(1), 30–39.

    Article  Google Scholar 

  19. M. I. Asghar, K. Miettunen, J. Halme, P. Vahermaa, M. Toivola, K. Aitola and P. Lund, Review of stability for advanced dye solar cells, Energy Environ. Sci., 2010, 3, 418–426.

    Article  CAS  Google Scholar 

  20. S. Lue, P. Lo, F. Huang, K. Cheng and Y. Tung, Correlation between Dye-Sensitized Solar Cell Performance and Internal Resistance using Electrochemical Impedance Spectroscopy, J. Phys. Chem. Biophys., 2015, 5, 1.

    CAS  Google Scholar 

  21. H. Zhu, J. Wei, K. Wang and D. Wu, Applications of carbon materials in photovoltaic solar cells, Sol. Energy Mater. Sol. Cells, 2009, 93, 1461–1470.

    Article  CAS  Google Scholar 

  22. L. Dai, D. W. Chang, J. B. Baek and W. Lu, Carbon nanomaterials for advanced energy conversion and storage, Small, 2012, 8, 1130–1166.

    Article  CAS  PubMed  Google Scholar 

  23. H. Li, S. S. Babu, S. T. Turner, D. Neher, M. J. Hollamby, T. Seki, S. Yagai, Y. Deguchi, H. Möhwald and T. Nakanishi, Alkylated-C60 based soft materials: regulation of self-assembly and optoelectronic properties by chain branching, J. Mater. Chem., 2013, 100, 1943–1951.

    Google Scholar 

  24. J.-X. Zhang, Y.-P. Zheng, L. Lan, S. Mo, P.-Y. Yu, W. Shi and R.-M. Wang, Direct synthesis of solvent-free multiwall carbon nanotubes/silica nonionic nanofluid hybrid material, ACS Nano, 2009, 3, 2185–2190.

    Article  CAS  PubMed  Google Scholar 

  25. S. S. Babu and T. Nakanishi, Nonvolatile functional molecular liquids, Chem. Commun., 2013, 49, 9373–9382.

    Article  CAS  Google Scholar 

  26. B. Santhosh, J. Aimi, H. Ozawa, N. Shirahata, A. Saeki, S. Seki, A. Ajayaghosh, H. Möhwald and T. Nakanishi, Solvent-Free Luminescent Organic Liquids, Angew. Chem., Int. Ed., 2012, 124, 3447–3451.

    Article  Google Scholar 

  27. T. N. Singh-Rachford and F. N. Castellano, Photon up-conversion based on sensitized triplet-triplet annihilation, Coord. Chem. Rev., 2010, 254, 2560–2573.

    Article  CAS  Google Scholar 

  28. P. Duan, N. Yanai and N. Kimizuka, Photon Upconverting Liquids: Matrix-Free Molecular Upconversion Systems Functioning in Air, J. Am. Chem. Soc., 2013, 135, 19056–19059.

    Article  CAS  PubMed  Google Scholar 

  29. N. Adachi, R. Itagaki, M. Sugeno and T. Norioka, Dispersion of Fullerene in Neat Synthesized Liquid-state Oligo(p-phenyleneethynylene)s, Chem. Lett., 2014, 43, 1770–1772.

    Article  CAS  Google Scholar 

  30. S. S. Babu, Paradigms shift when solvent-less fluids come into play, Phys. Chem. Chem. Phys., 2015, 17, 3950–3953.

    Article  CAS  PubMed  Google Scholar 

  31. S. Ghosh, V. K. Praveen and A. Ajayaghosh, The Chemistry and Applications of n-Gels, Annu. Rev. Mater. Res., 2016, 46, 235–262.

    Article  CAS  Google Scholar 

  32. F. Bella, S. Galliano, C. Gerbaldi and G. Viscardi, CobaltBased Electrolytes for Dye-Sensitized Solar Cells: Recent Advances towards Stable Devices, Energies, 2016, 9, 384.

    Article  CAS  Google Scholar 

  33. A. Bourlinos, E. Giannelis, Q. Zhang, L. Archer, G. Floudas and G. Fytas, Surface-functionalized nanoparticles with liquid-like behavior: The role of the constituent components, Eur. Phys. J. E, 2006, 20, 109–117.

    Article  CAS  PubMed  Google Scholar 

  34. H. Li, J. Choi and T. Nakanishi, Optoelectronic Functional Materials Based on Alkylated-n Molecules: Self-Assembled Architectures and Nonassembled Liquids, Langmuir, 2013, 29, 5394–5406.

    Article  CAS  PubMed  Google Scholar 

  35. S.-Y. Gu, X.-F. Gao and Y.-H. Zhang, Synthesis and characterization of solvent-free ionic molybdenum disulphide (MoS2) nanofluids, Mater. Chem. Phys., 2015, 149, 587–593.

    Article  CAS  Google Scholar 

  36. T. Michinobu, K. Okoshi, Y. Murakami, K. Shigehara, K. Ariga and T. Nakanishi, Structural requirements for producing solvent-free room temperature liquid fullerenes, Langmuir, 2013, 29, 5337–5344.

    Article  CAS  PubMed  Google Scholar 

  37. T. Michinobu, T. Nakanishi, J. P. Hill, M. Funahashi and K. Ariga, Room Temperature Liquid Fullerenes: An Uncommon Morphology of C60 Derivatives, J. Am. Chem. Soc., 2006, 128, 10384–10385.

    Article  CAS  PubMed  Google Scholar 

  38. Y. PY and Z. YP, The Synthesis of Solvent-Free TiO2 Nanofluids through Surface Modification, Soft Nanosci. Lett., 2011, 2, 45–49.

    Google Scholar 

  39. A. B. Bourlinos, A. Stassinopoulos, D. Anglos, R. Herrera, S. H. Anastasiadis, D. Petridis and E. P. Giannelis, Functionalized ZnO nanoparticles with liquid like behavior and their photoluminescence properties, Small, 2006, 2, 513–516.

    Article  CAS  PubMed  Google Scholar 

  40. N. Agnieszka, G. Dorota and T. Daniel, Meso-Substituted Liquid Porphyrins, Chem. - Asian J., 2010, 5, 904–909.

    Article  CAS  Google Scholar 

  41. S. Yang, Y. Tan, X. Yin, S. Chen, D. Chen, L. Wang, Y. Zhou and C. Xiong, Preparation and characterization of monodisperse solvent-free silica nanofluids, J. Dispersion Sci. Technol., 2017, 38, 425–431.

    Article  CAS  Google Scholar 

  42. Y. Zheng, J. Zhang, L. Lan, P. Yu, R. Rodriguez, R. Herrera, D. Wang and E. P. Giannelis, Preparation of Solvent-Free Gold Nanofluids with Facile Self-Assembly Technique, ChemPlusChem, 2010, 11, 61–64.

    CAS  Google Scholar 

  43. M. Hagen, E. Meijer, G. Mooij and D. Frenkel, Does C60 have a liquid phase?, Nature, 1993, 365, 425–426.

    Article  CAS  Google Scholar 

  44. F. Lu and T. Nakanishi, Alkyl-n engineering in state control toward versatile optoelectronic soft materials, Sci. Technol. Adv. Mater., 2015, 16, 014805.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. M. J. Hollamby and T. Nakanishi, The power of branched chains: optimising functional molecular materials, J. Mater. Chem. C, 2013, 1, 6178–6183.

    Article  CAS  Google Scholar 

  46. A. Çelik, A. Demir and Y. Bozkurt, Recent Developments in Flexible Solar cells, Nonlinear Opt., Quantum Opt., 2008, 38, 175–190.

    Google Scholar 

  47. Y. Zhou, J. Pei, Q. Dong, X. Sun, Y. Liu and W. Tian, Donor-Acceptor Molecule as the Acceptor for Polymer-Based Bulk Heterojunction Solar Cells, J. Phys. Chem. C, 2009, 113, 7882–7886.

    Article  CAS  Google Scholar 

  48. G. Conibeer, Third-generation photovoltaics, Mater. Today, 2007, 10, 42–50.

    Article  CAS  Google Scholar 

  49. M. Grätzel, Dye-Sensitized Solar Cells, J. Photochem. Photobiol., C, 2003, 4, 145–153.

    Article  CAS  Google Scholar 

  50. P. Choubey, A. Oudhia and R. Dewangan, A review: Solar cell current scenario and future trends, Recent Res. Sci. Technol., 2012, 4, 99–101.

    Google Scholar 

  51. S. S. Babu, M. J. Hollamby, J. Aimi, H. Ozawa, A. Saeki, S. Seki, K. Kobayashi, K. Hagiwara, M. Yoshizawa and H. Möhwald, Nonvolatile liquid anthracenes for facile fullcolour luminescence tuning at single blue-light excitation, Nat. Commun., 2013, 4, 1969.

    Article  PubMed  CAS  Google Scholar 

  52. S. A. Rice and J. Jortner, Do Exciton States Exist in the Liquid Phase?, J. Chem. Phys., 1966, 44, 4470–4472.

    Article  CAS  Google Scholar 

  53. A. Ghosh and T. Nakanishi, Frontiers of solvent-free functional molecular liquids, Chem. Commun., 2017, 53, 10344–10357.

    Article  CAS  Google Scholar 

  54. T. Meng, K.-H. Young, D. F. Wong and J. Nei, Ionic Liquid-Based Non-Aqueous Electrolytes for Nickel/Metal Hydride Batteries, Batteries, 2017, 3, 4–15.

    Article  CAS  Google Scholar 

  55. J.-C. Ribierre, T. Aoyama, T. Muto, Y. Imase and T. Wada, Charge transport properties in liquid carbazole, Org. Electron., 2008, 9, 396–400.

    Article  CAS  Google Scholar 

  56. K. Kubota, S. Hirata, Y. Shibano, O. Hirata, M. Yahiro and C. Adachi, Liquid carbazole substituted with a poly(ethyl-ene oxide) group and its application for liquid organic light-emitting diodes, Chem. Lett., 2012, 41, 934–936.

    Article  CAS  Google Scholar 

  57. J.-C. Ribierre, L. Zhao, M. Inoue, P.-O. Schwartz, J.-H. Kim, K. Yoshida, A. S. Sandanayaka, H. Nakanotani, L. Mager and S. Méry, Low threshold amplified spontaneous emission and ambipolar charge transport in non-volatile liquid fluorene derivatives, Chem. Commun., 2016, 52, 3103–3106.

    Article  CAS  Google Scholar 

  58. B. A. Kamino, T. P. Bender and R. A. Klenkler, Hole Mobility of a Liquid Organic Semiconductor, J. Phys. Chem. Lett., 2012, 3, 1002–1006.

    Article  CAS  PubMed  Google Scholar 

  59. J. B. Hasted, Aqueous dielectrics, Chapman and Hall, 1973.

    Google Scholar 

  60. T. Grancha, J. S. Ferrando-Soria, J. Cano, P. Amorós, B. Seoane, J. Gascon, M. Bazaga-García, E. R. Losilla, A. Cabeza and D. Armentano, Insights into the Dynamics of Grotthuss Mechanism in a Proton-Conducting Chiral bioMOF, Chem. Mater., 2016, 28, 4608–4615.

    Article  CAS  Google Scholar 

  61. S. Tan, Z. Zhao, C. Wang and Y. Wu, A thiolate/disulfide liquid crystalline electrolyte for dye-sensitized solar cells: Promotion of the Grotthuss-type charge transport through lamellar nanostructures, Electrochim. Acta, 2018, 288, 165–172.

    Article  CAS  Google Scholar 

  62. W. Xu and C. A. Angell, Solvent-free electrolytes with aqueous solution-like conductivities, Science, 2003, 302, 422–425.

    Article  CAS  PubMed  Google Scholar 

  63. S. García-Garabal, J. Vila, E. Rilo, M. Domínguez-Pérez, L. Segade, E. Tojo, P. Verdía, L. Varela and O. Cabeza, Transport Properties for 1-Ethyl-3-methylimidazolium n-alkyl Sulphates: Possible Evidence of Grothuss Mechanism, Electrochim. Acta, 2017, 231, 94–102.

    Article  CAS  Google Scholar 

  64. B. O'regan and M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, 1991, 353, 737.

    Article  CAS  Google Scholar 

  65. J. Gong, K. Sumathy, Q. Qiao and Z. Zhou, Review on dye-sensitized solar cells (DSSCs): Advanced techniques and research trends, Renewable Sustainable Energy Rev., 2017, 68, 234–246.

    Article  CAS  Google Scholar 

  66. K. Surana and R. M. Mehra, Quantum Dot Sensitized Solar Cells (QDSSCs), Nanomaterials and Their Applications, Springer, Singapore, 2018, pp. 315–321.

    Google Scholar 

  67. I. Obotowo, I. Obot and U. Ekpe, Organic sensitizers for dye-sensitized solar cell (DSSC): Properties from computation, progress and future perspectives, J. Mol. Struct., 2016, 1122, 80–87.

    Article  CAS  Google Scholar 

  68. A. Zrenner, A close look on single quantum dots, J. Chem. Phys., 2000, 112, 7790–7798.

    Article  CAS  Google Scholar 

  69. P. Kambhampati, Unraveling the Structure and Dynamics of Excitons in Semiconductor Quantum Dots, Acc. Chem. Res., 2010, 44, 1–13.

    Article  PubMed  CAS  Google Scholar 

  70. M. Cheng, X. Yang, F. Zhang, J. Zhao and L. Sun, Tuning the HOMO and LUMO Energy Levels of Organic Dyes with N-Carboxomethylpyridinium as Acceptor To Optimize the Efficiency of Dye-Sensitized Solar Cells, J. Phys. Chem. C, 2013, 117, 9076–9083.

    Article  CAS  Google Scholar 

  71. S. Nakade, T. Kanzaki, W. Kubo, T. Kitamura, Y. Wada and S. Yanagida, Role of Electrolytes on Charge Recombination in Dye-Sensitized TiO2 Solar Cell (1): The Case of Solar Cells Using the I-/I3- Redox Couple, J. Phys. Chem. B, 2005, 109, 3480–3487.

    Article  CAS  PubMed  Google Scholar 

  72. B. C. O’Regan, I. López-Duarte, M. V. Martínez-Díaz, A. Forneli, J. Albero, A. Morandeira, E. Palomares, T. Torres and J. R. Durrant, Catalysis of Recombination and Its Limitation on Open Circuit Voltage for Dye Sensitized Photovoltaic Cells Using Phthalocyanine Dyes, J. Am. Chem. Soc., 2008, 130, 2906–2907.

    Article  PubMed  CAS  Google Scholar 

  73. X. Liu, J. Fang, Y. Liu and T. Lin, Progress in nanostructured photoanodes for dye-sensitized solar cells, Front. Mater. Sci., 2016, 10, 225–237.

    Article  Google Scholar 

  74. R. Mori, T. Ueta, K. Sakai, Y. Niida, Y. Koshiba, L. Lei, K. Nakamae and Y. Ueda, Organic solvent based TiO2 dispersion paste for dye-sensitized solar cells prepared by industrial production level procedure, J. Mater. Sci., 2011, 46, 1341–1350.

    Article  CAS  Google Scholar 

  75. G. Chen, L. Wang, Y. Zou, X. Sheng, H. Liu, X. Pi, D. Yang and CdSe, Quantum Dots Sensitized Mesoporous TiO2 Solar Cells with CuSCN as Solid-State Electrolyte, J. Nanomater., 2011, 2011, 40.

    Google Scholar 

  76. J. T. Margraf, A. S. Ruland, V. Sgobba, D. M. Guldi and T. Clark, Quantum-dot-sensitized solar cells: Understanding linker molecules through theory and experiment, Langmuir, 2013, 29, 2434–2438.

    Article  CAS  PubMed  Google Scholar 

  77. Y.-L. Lee, C.-L. Chen, L.-W. Chong, C.-H. Chen, Y.-F. Liu and C.-F. Chi, A platinum counter electrode with high electrochemical activity and high transparency for dye-sensitized solar cells, Electrochem. Commun., 2010, 12, 1662–1665.

    Article  CAS  Google Scholar 

  78. C. H. Yoon, R. Vittal, J. Lee, W.-S. Chae and K.-J. Kim, Enhanced performance of a dye-sensitized solar cell with an electrodeposited-platinum counter electrode, Electrochim. Acta, 2008, 53, 2890–2896.

    Article  CAS  Google Scholar 

  79. M.-H. Yeh, C.-P. Lee, C.-Y. Chou, L.-Y. Lin, H.-Y. Wei, C. -W. Chu, R. Vittal and K.-C. Ho, Conducting polymer-based counter electrode for a quantum-dot-sensitized solar cell (QDSSC) with a polysulfide electrolyte, Electrochim. Acta, 2011, 57, 277–284.

    Article  CAS  Google Scholar 

  80. W. Hong, Y. Xu, G. Lu, C. Li and G. Shi, Transparent gra-phene/PEDOT-PSS composite films as counter electrodes of dye-sensitized solar cells, Electrochem. Commun., 2008, 10, 1555–1558.

    Article  CAS  Google Scholar 

  81. J. Wu, Q. Li, L. Fan, Z. Lan, P. Li, J. Lin and S. Hao, Highperformance polypyrrole nanoparticles counter electrode for dye-sensitized solar cells, J. Power Sources, 2008, 181, 172–176.

    Article  CAS  Google Scholar 

  82. Y. Xiao, J. Wu, G. Yue, J. Lin, M. Huang and Z. Lan, Low temperature preparation of a high performance Pt/ SWCNT counter electrode for flexible dye-sensitized solar cells, Electrochim. Acta, 2011, 56, 8545–8550.

    Article  CAS  Google Scholar 

  83. X. Xu, D. Huang, K. Cao, M. Wang, S. M. Zakeeruddin and M. Grätzel, Electrochemically reduced graphene oxide multilayer films as efficient counter electrode for dye-sensitized solar cells, Sci. Rep., 2013, 3, 1489.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. C.-P. Lee, C.-T. Li and K.-C. Ho, Use of organic materials in dye-sensitized solar cells, Mater. Today, 2017, 20, 267–283.

    Article  CAS  Google Scholar 

  85. S. Yun, Y. Liu, T. Zhang and S. Ahmad, Recent advances in alternative counter electrode materials for Co-mediated dye-sensitized solar cells, Nanoscale, 2015, 7, 11877–11893.

    Article  CAS  PubMed  Google Scholar 

  86. J. Burschka, V. Brault, S. Ahmad, L. Breau, M. K. Nazeeruddin, B. Marsan, S. M. Zakeeruddin and M. Grätzel, Influence of the counter electrode on the photovoltaic performance of dye-sensitized solar cells using a disulfide/thiolate redox electrolyte, Energy Environ. Sci., 2012, 5, 6089–6097.

    Article  CAS  Google Scholar 

  87. Y. Shibata, T. Kato, T. Kado, R. Shiratuchi, W. Takashima, K. Kaneto and S. Hayase, Quasi-solid dye sensitised solar cells filled with ionic liquid—increase in efficiencies by specific interaction between conductive polymers and gelators, Chem. Commun., 2003, 2730–2731.

    Google Scholar 

  88. G. Boschloo and A. Hagfeldt, Characteristics of the Iodide/Triiodide Redox Mediator in Dye-Sensitized Solar Cells, Acc. Chem. Res., 2009, 42, 1819–1826.

    Article  CAS  PubMed  Google Scholar 

  89. Y.-L. Lee and C.-H. Chang, Efficient polysulfide electrolyte for CdS quantum dot-sensitized solar cells, J. Power Sources, 2008, 185, 584–588.

    Article  CAS  Google Scholar 

  90. J.-H. Yum, E. Baranoff, F. Kessler, T. Moehl, S. Ahmad, T. Bessho, A. Marchioro, E. Ghadiri, J.-E. Moser and C. Yi, A cobalt complex redox shuttle for dye-sensitized solar cells with high open-circuit potentials, Nat. Commun., 2012, 3, 631.

    Article  PubMed  CAS  Google Scholar 

  91. A. Yella, H.-W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W.-G. Diau, C.-Y. Yeh, S. M. Zakeeruddin and M. Grätzel, Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency, Science, 2011, 334, 629–634.

    Article  CAS  PubMed  Google Scholar 

  92. J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang, L. Fan and G. Luo, Electrolytes in Dye-Sensitized Solar Cells, Chem. Rev., 2015, 115, 2136–2173.

    Article  CAS  PubMed  Google Scholar 

  93. P. Chawla and M. Tripathi, Nanocomposite Polymer Electrolyte for Enhancement in Stability of Betacyanin Dye Sensitized Solar Cells, Electrochem. Solid-State Lett., 2015, 4, Q21–Q23.

    Article  CAS  Google Scholar 

  94. S. Yun, J. N. Freitas, A. F. Nogueira, Y. Wang, S. Ahmad and Z.-S. Wang, Dye-sensitized solar cells employing polymers, Prog. Polym. Sci., 2016, 59, 1–40.

    Article  CAS  Google Scholar 

  95. C. L. Boldrini, N. Manfredi, F. M. Perna, V. Trifiletti, V. Capriati and A. Abbotto, Dye-Sensitized Solar Cells that use an Aqueous Choline Chloride-Based Deep Eutectic Solvent as Effective Electrolyte Solution, Energy Technol., 2017, 5, 345–353.

    Article  CAS  Google Scholar 

  96. S.-H. Park, I. Y. Song, J. Lim, Y. S. Kwon, J. Choi, S. Song, J.-R. Lee and T. Park, A novel quasi-solid state dye-sensitized solar cell fabricated using a multifunctional network polymer membrane electrolyte, Energy Environ. Sci., 2013, 6, 1559–1564.

    Article  CAS  Google Scholar 

  97. J. Gong, K. Sumathy and J. Liang, Polymer electrolyte based on polyethylene glycol for quasi-solid state dye sensitized solar cells, Renewable Energy, 2012, 39, 419–423.

    Article  CAS  Google Scholar 

  98. H. Yang, M. Huang, J. Wu, Z. Lan, S. Hao and J. Lin, The polymer gel electrolyte based on poly(methyl methacrylate) and its application in quasi-solid-state dye-sensitized solar cells, Mater. Chem. Phys., 2008, 110, 38–42.

    Article  CAS  Google Scholar 

  99. A. Arof, I. Noor, M. Buraidah, T. Bandara, M. Careem, I. Albinsson and B.-E. Mellander, Polyacrylonitrile Gel Polymer Electrolyte Based Dye Sensitized Solar Cells for a Prototype Solar Panel, Electrochim. Acta, 2017, 251, 223–234.

    Article  CAS  Google Scholar 

  100. M. G. Kang, N.-G. Park, K.-M. Kim, K. S. Ryu, S. H. Chang and K.-J. Kim, Highly efficient polymer gel electrolytes for dye-sensitized solar cells, Proc. 3rd World Conference on Photovoltaic Energy Conversion, 2003.

  101. N. Mohmeyer, P. Wang, H.-W. Schmidt, S. M. Zakeeruddin and M. Grätzel, Quasi-solid-state dye sensitized solar cells with 1,3:2,4-di-O-benzylidene-D-sorbitol derivatives as low molecular weight organic gelators, J. Mater. Chem., 2004, 14, 1905–1909.

    Article  CAS  Google Scholar 

  102. L. Tao, Z. Huo, S. Dai, Y. Ding, J. Zhu, C. Zhang, B. Zhang, J. Yao, M. K. Nazeeruddin and M. Grätzel, Stable QuasiSolid-State Dye-Sensitized Solar Cells Using Novel Low Molecular Mass Organogelators and Room-Temperature Molten Salts, J. Phys. Chem. C, 2014, 118, 16718–16726.

    Article  CAS  Google Scholar 

  103. J. Wu, Z. Lan, S. Hao, P. Li, J. Lin, M. Huang, L. Fang and Y. Huang, Progress on the electrolytes for dye-sensitized solar cells, PureAppl. Chem., 2008, 80, 2241–2258.

    Article  CAS  Google Scholar 

  104. Z. Seidalilir, R. Malekfar, H.-P. Wu, J.-W. Shiu and E. W.-G. Diau, High-Performance and Stable Gel-State Dye-Sensitized Solar Cells Using Anodic TiO2 Nanotube Arrays and Polymer-Based Gel Electrolytes, ACS Appl. Mater. Interfaces, 2015, 7, 12731–12739.

    Article  CAS  PubMed  Google Scholar 

  105. S.-Y. Shen, R.-X. Dong, P.-T. Shih, V. Ramamurthy, J.-J. Lin and K.-C. Ho, Novel Polymer Gel Electrolyte with Organic Solvents for Quasi-Solid-State Dye-Sensitized Solar Cells, ACS Appl. Mater. Interfaces, 2014, 6, 18489–18496.

    Article  CAS  PubMed  Google Scholar 

  106. T. V. Burova, N. V. Grinberg, A. S. Dubovik, E. A. Olenichenko, V. N. Orlov and V. Y. Grinberg, Interpolyelectrolyte complexes of lysozyme with short poly [di(carboxylatophenoxy)phosphazene]. Binding energetics and protein conformational stability, Polymer, 2017, 108, 97–104.

    Article  CAS  Google Scholar 

  107. C. Fiedler, B. Luerssen, B. Lucht and J. Janek, Synthesis and characterization of polyphosphazene electrolytes including cyclic ether side groups, J. Power Sources, 2018, 384, 165–171.

    Article  CAS  Google Scholar 

  108. A. J. Pearse, T. E. Schmitt, E. J. Fuller, F. El-Gabaly, C.-F. Lin, K. Gerasopoulos, A. C. Kozen, A. A. Talin, G. Rubloff and K. E. Gregorczyk, Nanoscale Solid State Batteries Enabled by Thermal Atomic Layer Deposition of a Lithium Polyphosphazene Solid State Electrolyte, Chem. Mater., 2017, 29, 3740–3753.

    Article  CAS  Google Scholar 

  109. S.-H. A. Lee, A.-M. S. Jackson, A. Hess, S.-T. Fei, S. M. Pursel, J. Basham, C. A. Grimes, M. W. Horn, H. R. Allcock and T. E. Mallouk, Influence of Different Iodide Salts on the Performance of Dye-Sensitized Solar Cells Containing Phosphazene-Based Nonvolatile Electrolytes, J. Phys. Chem. C, 2010, 114, 15234–15242.

    Article  CAS  Google Scholar 

  110. N. Manfredi, A. Bianchi, V. Causin, R. Ruffo, R. Simonutti and A. Abbotto, Electrolytes for quasi solid-state dye-sensitized solar cells based on block copolymers, J. Polym. Sci., Part A: Polym. Chem., 2014, 52, 719–727.

    Article  CAS  Google Scholar 

  111. T. M. Bandara, H. Fernando, M. Furlani, I. Albinsson, M. Dissanayake and B.-E. Mellander, Performance enhancers for gel polymer electrolytes based on LiI and RbI for quasi-solid-state dye sensitized solar cells, RSC Adv., 2016, 6, 103683–103691.

    Article  CAS  Google Scholar 

  112. L.-Y. Chang, C.-P. Lee, C.-T. Li, M.-H. Yeh, K.-C. Ho and J.-J. Lin, Synthesis of a novel amphiphilic polymeric ionic liquid and its application in quasi-solid-state dye-sensitized solar cells, J. Mater. Chem. A, 2014, 2, 20814–20822.

    Article  CAS  Google Scholar 

  113. K. Prabakaran, A. K. Palai, S. Mohanty and S. K. Nayak, Aligned carbon nanotube/polymer hybrid electrolytes for high performance dye sensitized solar cell applications, RSCAdv., 2015, 5, 66563–66574.

    CAS  Google Scholar 

  114. S. M. Zakeeruddin and M. Grätzel, Solvent-Free Ionic Liquid Electrolytes for Mesoscopic Dye-Sensitized Solar Cells, Adv. Funct. Mater., 2009, 19, 2187–2202.

    Article  CAS  Google Scholar 

  115. C.-P. Lee, P.-Y. Chen and K.-C. Ho, Ionic Liquid Based Electrolytes for Dye-Sensitized Solar Cells, in Ionic liquids: Theory, properties, new approaches, InTech, 2011.

    Google Scholar 

  116. C.-P. Lee, T.-C. Chu, L.-Y. Chang, J.-J. Lin and K.-C. Ho, Solid-State Ionic Liquid Based Electrolytes for Dye-Sensitized Solar Cells, in Ionic Liquids-New Aspects for the Future, InTech, 2013.

    Google Scholar 

  117. P. Wang, S. M. Zakeeruddin, I. Exnar and M. Grätzel, High efficiency dye-sensitized nanocrystalline solar cells based on ionic liquid polymer gel electrolyte, Chem. Commun., 2002, 2972–2973.

    Google Scholar 

  118. K. B. Aribia, T. Moehl, S. M. Zakeeruddin and M. Grätzel, Tridentate cobalt complexes as alternative redox couples for high-efficiency dye-sensitized solar cells, Chem. Sci., 2013, 4, 454–459.

    Article  Google Scholar 

  119. F. Zhu, P. Zhang, X. Wu, L. Fu, J. Zhang and D. Xu, The Origin of Higher Open-Circuit Voltage in Zn-Doped TiO2 Nanoparticle-Based Dye-Sensitized Solar Cells, ChemPhysChem, 2012, 13, 3731–3737.

    Article  CAS  PubMed  Google Scholar 

  120. K. Murakoshi, G. Kano, Y. Wada, S. Yanagida, H. Miyazaki, M. Matsumoto and S. Murasawa, Importance of binding states between photosensitizing molecules and the TiO2 surface for efficiency in a dye-sensitized solar cell, J. Electroanal. Chem., 1995, 396, 27–34.

    Article  Google Scholar 

  121. J. Li, W. Wu, J. Yang, J. Tang, Y. Long and J. Hua, Effect of chenodeoxycholic acid (CDCA) additive on phenothiazine dyes sensitized photovoltaic performance, Sci. China: Chem., 2011, 54, 699–706.

    CAS  Google Scholar 

  122. A. K. Biswas, A. Das and B. Ganguly, The influence of non-covalent interactions in metal-free organic dye molecules to augment the efficiency of dye sensitized solar cells: A computational study, Int. J. Quantum Chem., 2017, 117, e25415.

    Article  CAS  Google Scholar 

  123. N. Koumura, Z.-S. Wang, S. Mori, M. Miyashita, E. Suzuki and K. Hara, Alkyl-functionalized organic dyes for efficient molecular photovoltaics, J. Am. Chem. Soc., 2006, 128, 14256–14257.

    Article  CAS  PubMed  Google Scholar 

  124. Y. Tan, Y. Zheng, N. Wang and A. Zhang, Controlling the Properties of Solvent-free Fe3O4 Nanofluids by Corona Structure, Nano-Micro Lett., 2012, 4, 208–214.

    Article  CAS  Google Scholar 

  125. K. Zhu, T. B. Vinzant, N. R. Neale and A. J. Frank, Removing structural disorder from oriented TiO2 nanotube arrays: reducing the dimensionality of transport and recombination in dye-sensitized solar cells, Nano Lett., 2007, 7, 3739–3746.

    Article  CAS  PubMed  Google Scholar 

  126. P.-Y. Yu, Y.-P. Zheng and L. Lan, The Synthesis of SolventFree TiO2 Nanofluids through Surface Modification, Soft Nanosci. Lett., 2011, 1, 45–49.

    Article  CAS  Google Scholar 

  127. X. Wu, X. Zhou, Q. Wu and W. Yan, Facile fabrication of thermal-control ionic liquid compound based on undeca-tungstophosphoindic polyoxometalate with fast ionic conductivity, New J. Chem., 2016, 40, 7923–7927.

    Article  CAS  Google Scholar 

  128. J. Ding, C. Yu, N. Yuan, Y. Liu and Y. Fan, Electrical conductivity of waterborne polyurethane/graphene composites prepared by solution mixing, J. Compos. Mater., 2012, 46, 747–752.

    Article  CAS  Google Scholar 

  129. X. Du, I. Skachko, A. Barker and E. Y. Andrei, Approaching ballistic transport in suspended graphene, Nat. Nanotechnol., 2008, 3, 491–495.

    Article  CAS  PubMed  Google Scholar 

  130. I. Martini, J. H. Hodak and G. V. Hartland, Effect of Structure on Electron Transfer Reactions between Anthracene Dyes and TiO2 Nanoparticles, J. Phys. Chem. B, 1998, 102, 9508–9517.

    Article  CAS  Google Scholar 

  131. R. Ernstorfer, L. Gundlach, S. Felber, W. Storck, R. Eichberger and F. Willig, Role of Molecular Anchor Groups in Molecule-to-Semiconductor Electron Transfer, J. Phys. Chem. B, 2006, 110, 25383–25391.

    Article  CAS  PubMed  Google Scholar 

  132. P. Persson, M. J. Lundqvist, R. Ernstorfer, W. Goddard and F. Willig, Quantum Chemical Calculations of the Influence of Anchor-Cum-Spacer Groups on Femtosecond Electron Transfer Times in Dye-Sensitized Semiconductor Nanocrystals, J. Chem. Theory Comput., 2006, 2, 441–451.

    Article  CAS  PubMed  Google Scholar 

  133. E. Ronca, M. Pastore, L. Belpassi, F. Tarantelli and F. De Angelis, Influence of the dye molecular structure on the TiO2 conduction band in dye-sensitized solar cells: disentangling charge transfer and electrostatic effects, Energy Environ. Sci., 2013, 6, 183–193.

    Article  CAS  Google Scholar 

  134. O. Bagheri, H. Dehghani and M. Afrooz, Pyridine derivatives; new efficient additives in bromide/tribromide electrolyte for dye sensitized solar cells, RSc. Adv., 2015, 105, 86191–86198.

    Article  Google Scholar 

  135. A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo and H. Pettersson, Dye-Sensitized Solar Cells, Chem. Rev., 2010, 110, 6595–6663.

    Article  CAS  PubMed  Google Scholar 

  136. S. G. Hashmi, M. Ozkan, J. Halme, K. D. Misic, S. M. Zakeeruddin, J. Paltakari, M. Grätzel and P. D. Lund, High performance dye-sensitized solar cells with inkjet printed ionic liquid electrolyte, Nano Energy, 2015, 17, 206–215.

    Article  CAS  Google Scholar 

  137. K. Miettunen, J. Vapaavuori, A. Poskela, A. Tiihonen and P. D. Lund, Recent progress in flexible dye solar cells, Wiley Interdiscip. Rev.: Energy Environ., 2018, 7, e302.

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge Dr S. Anas, Hon. Director, AMMRC, for the encouragement and Mahatma Gandhi University for the generous support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh Mathew.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sasi, S., Sugunan, S.K., Nair, P.R. et al. Scope of surface-modified molecular and nanomaterials in gel/liquid forms for developing mechanically flexible DSSCs/QDSSCs. Photochem Photobiol Sci 18, 15–29 (2019). https://doi.org/10.1039/c8pp00293b

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c8pp00293b

Navigation