Skip to main content
Log in

Anoxic photocatalytic treatment of synthetic mining wastewater using TiO2 and scavengers for complexed cyanide recovery

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The wastewater from gold exploitation is well known for the toxic nature of recalcitrant cyanide metallic complexes. In this work the selectivity in the photocatalytic degradation of gold mining wastewater (Fe(CN)6 3 ) using suspended TiO2 with alcoholic and organic acid scavengers in a mini-CPC photoreactor with a 30 W UV-A LED as an artificial source of light was evaluated. The study was done in four stages: 1. load catalyst determination, 2. combination of scavengers in a typical photocatalytic degradation, 3. evaluation of scavenger concentration and 4. kinetic study. The decomposition into CN and Fe removal of the cyanocomplex were tracked. It was observed that formic acid (FA) and t-butanol (t-ButOH) were the best scavengers for the photocatalytic degradation under anoxic conditions. The best concentrations of acceptors used in the study were 10 mM FA and 10 mM t-ButOH at 20 W m−2 of UV-A power, reaching 80% degradation of Fe(CN)6 3−, 40% Fe removal and 18 ppm of free cyanide CN release to the liquid phase. The electrical efficiency of oxidation per order (E Eo) was increased by about 50% with the addition of scavengers instead of traditional anoxic photocatalytic treatment. It was proved that the photocatalytic decomposition of the Fe cyanocomplex was done through the photoreduction path of the metal complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. K. R. Malloch and D. Craw, Comparison of contrasting gold mine processing residues in a temperate rain forest, New Zealand, Appl. Geochem., 2017, 84, 61–75.

    Article  CAS  Google Scholar 

  2. G. Chi, M. C. Fuerstenau and J. O. Marsden, Study of Merrill-Crowe processing. Part I: S, solubility of zinc in alkaline cyanide solution, Int. J. Miner. Process., 1997, 49, 171–183.

    Article  CAS  Google Scholar 

  3. Universidad Industrial de Santander UIS, Estimación de áreas intervenidas, consumo de agua, energía eléctrica y costos de producción en la actividad minera, 2014.

  4. Sistema de información minero Colombiano, Historico de producción de oro.

  5. S. H. Kim, S. W. Lee, G. M. Lee, B.-T. Lee, S.-T. Yun and S.-O. Kim, Monitoring of TiO2-catalytic UV-LED photo-oxidation of cyanide contained in mine wastewater and leachate, Chemosphere, 2016, 143, 106–114.

    Article  CAS  PubMed  Google Scholar 

  6. I. Dobrosz-Gómez, B. D. Ramos García, E. GilPavas and M. Á. Gómez García, Kinetic study on HCN volatilization in gold leaching tailing ponds, Miner. Eng., 2017, 110, 185–194.

    Article  CAS  Google Scholar 

  7. J. Vymazal, Constructed wetlands for treatment of industrial wastewaters: A review, Ecol. Eng., 2014, 73, 724–751.

    Article  Google Scholar 

  8. N. Gupta, C. Balomajumder and V. K. K. Agarwal, Enzymatic mechanism and biochemistry for cyanide degradation: A review, J. Hazard. Mater., 2010, 176, 1–13.

    Article  CAS  PubMed  Google Scholar 

  9. V. M. Luque-Almagro, C. Moreno-Vivián and M. D. Roldán, Biodegradation of cyanide wastes from mining and jewellery industries, Curr. Opin. Biotechnol., 2016, 38, 9–13.

    Article  CAS  PubMed  Google Scholar 

  10. X. Dai, A. Simons and P. Breuer, A review of copper cyanide recovery technologies for the cyanidation of copper containing gold ores, Miner. Eng., 2012, 25, 1–13.

    Article  CAS  Google Scholar 

  11. S. A. Al-Saydeh, M. H. El-Naas and S. J. Zaidi, Copper removal from industrial wastewater: A comprehensive review, J. Ind. Eng. Chem., 2017, 56, 35–44.

    Article  CAS  Google Scholar 

  12. J. Byrne, P. Dunlop, J. Hamilton, P. Fernández-Ibáñez, I. Polo-López, P. Sharma and A. Vennard, A Review of Heterogeneous Photocatalysis for Water and Surface Disinfection, Molecules, 2015, 20, 5574–5615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. A. Fujishima, X. Zhang and D. A. Tryk, TiO2 photocatalysis and related surface phenomena, Surf. Sci. Rep., 2008, 63, 515–582.

    Article  CAS  Google Scholar 

  14. D. Spasiano, R. Marotta, S. Malato, P. Fernandez-Ibáñez and I. Di Somma, Solar photocatalysis: Materials, reactors, some commercial, and pre-industrialized applications. A comprehensive approach, Appl. Catal., B, 2015, 170–171, 90–123.

    Article  CAS  Google Scholar 

  15. O. Ola and M. Mercedes Maroto-Valer, Role of catalyst carriers in CO2 photoreduction over nanocrystalline nickel loaded TiO2-based photocatalysts, J. Catal., 2014, 309, 300–308.

    Article  CAS  Google Scholar 

  16. X. Liu, L. Pan, T. Lv and Z. Sun, CdS sensitized TiO2 film for photocatalytic reduction of Cr(VI) by microwave-assisted chemical bath deposition method, J. Alloys Compd., 2014, 583, 390–395.

    Article  CAS  Google Scholar 

  17. F. Mahlamvana and R. J. Kriek, Photocatalytic reduction of platinum(II and IV) from their chloro complexes in a titanium dioxide suspension in the absence of an organic sacrificial reducing agent, Appl. Catal., B, 2014, 148–149, 387–393.

    Article  CAS  Google Scholar 

  18. K. Osathaphan, K. Ruengruehan, R. A. Yngard and V. K. Sharma, Photocatalytic Degradation of Ni(II)-Cyano and Co(III)-Cyano Complexes, Water, Air, Soil Pollut., 2013, 224, 1647.

    Article  CAS  Google Scholar 

  19. L. D. C. Cid, M. D. C. Grande, E. O. Acosta and B. Ginzberg, Removal of Cr(VI) and humic acid by heterogeneous photocatalysis in a laboratory reactor and a pilot reactor, Ind. Eng. Chem. Res., 2012, 51, 9468–9474.

    Article  CAS  Google Scholar 

  20. L. Li, F. Jiang, J. Liu, H. Wan, Y. Wan and S. Zheng, Enhanced photocatalytic reduction of aqueous Pb(II) over Ag loaded TiO2 with formic acid as hole scavenger, J. Environ. Sci. Health, Part A: Toxic/Hazard. Subst. Environ. Eng., 2012, 47, 327–336.

    Article  CAS  Google Scholar 

  21. M. V. Dozzi, A. Saccomanni and E. Selli, Cr(VI) photo-catalytic reduction: Effects of simultaneous organics oxidation and of gold nanoparticles photodeposition on TiO2, J. Hazard. Mater., 2012, 211–212, 188–195.

    Article  PubMed  CAS  Google Scholar 

  22. N. Aman, T. Mishra, J. Hait and R. K. Jana, Simultaneous photoreductive removal of copper(II) and selenium(IV) under visible light over spherical binary oxide photo-catalyst, J. Hazard. Mater., 2011, 186, 360–366.

    Article  CAS  PubMed  Google Scholar 

  23. C. Karunakaran, V. Rajeswari and P. Gomathisankar, Antibacterial and photocatalytic activities of sonochemically prepared ZnO and Ag–ZnO, J. Alloys Compd., 2010, 508, 587–591.

    Article  CAS  Google Scholar 

  24. C. Karunakaran, G. Abiramasundari, P. Gomathisankar, G. Manikandan and V. Anandi, Preparation and characterization of ZnO–TiO2 nanocomposite for photocatalytic disinfection of bacteria and detoxification of cyanide under visible light, Mater. Res. Bull., 2011, 46, 1586–1592.

    Article  CAS  Google Scholar 

  25. R. M. Mohamed and E. S. Baeissa, Preparation and characterisation of Pd–TiO2–hydroxyapatite nanoparticles for the photocatalytic degradation of cyanide under visible light, Appl. Catal., A, 2013, 464–465, 218–224.

    Article  CAS  Google Scholar 

  26. M. W. Kadi and R. M. Mohamed, Enhanced Photocatalytic Activity of ZrO2-SiO2 Nanoparticles by Platinum Doping, Int. J. Photoenergy, 2013, 2013, 1–7.

    Article  CAS  Google Scholar 

  27. E. S. Baeissa, Photocatalytic removal of cyanide by cobalt metal doped on TiO2-SiO2 nanoparticles by photo-assisted deposition and impregnation methods, J. Ind. Eng. Chem., 2014, 20, 3761–3766.

    Article  CAS  Google Scholar 

  28. A. Bozzi, I. Guasaquillo and J. Kiwi, Accelerated removal of cyanides from industrial effluents by supported TiO2 photo-catalysts, Appl. Catal., B, 2004, 51, 203–211.

    Article  CAS  Google Scholar 

  29. M. BARAKAT, Removal of toxic cyanide and Cu(II) Ions from water by illuminated TiO2 catalyst, Appl. Catal., B, 2004, 53, 13–20.

    Article  CAS  Google Scholar 

  30. R. Van Grieken, J. Aguado, R. Van Grieken, M.-J. J. López-Muñoz and J. Marugán, Photocatalytic gold recovery from spent cyanide plating bath solutions, Gold Bull., 2005, 38, 180–187.

    Article  Google Scholar 

  31. R. van Grieken, J. Aguado, M.-J. López-Muñoz and J. Marugán, Photocatalytic degradation of iron–cyanocomplexes by TiO2 based catalysts, Appl. Catal., B, 2005, 55, 201–211.

    Article  CAS  Google Scholar 

  32. M.-J. López-Muñoz, R. Van Grieken, J. Aguado and J. Marugán, Role of the support on the activity of silica-supported TiO2 photocatalysts: Structure of the TiO2/SBA-15 photocatalysts, Catal. Today, 2005, 101, 307–314.

    Article  CAS  Google Scholar 

  33. S. Vilhunen and M. Sillanpää, Recent developments in photochemical and chemical AOPs in water treatment: A mini-review, Rev. Environ. Sci. Biotechnol., 2010, 9, 323–330.

    Article  CAS  Google Scholar 

  34. F. A. Harraz, O. E. Abdel-Salam, A. A. Mostafa, R. M. Mohamed and M. Hanafy, Rapid synthesis of titania–silica nanoparticles photocatalyst by a modified sol–gel method for cyanide degradation and heavy metals removal, J. Alloys Compd., 2013, 551, 1–7.

    Article  CAS  Google Scholar 

  35. A. Mills and S. Le Hunte, An overview of semiconductor photocatalysis, J. Photochem. Photobiol., A, 1997, 108, 1–35.

    Article  CAS  Google Scholar 

  36. D. Chen, M. Sivakumar and A. K. Ray, Heterogeneous Photocatalysis in Environmental Remediation, Dev. Chem. Eng. Miner. Process., 2000, 8, 505–550.

    Article  Google Scholar 

  37. M. A. Henderson, A surface science perspective on TiO2 photocatalysis, Surf. Sci. Rep., 2011, 66, 185–297.

    Article  CAS  Google Scholar 

  38. J. Hirayama and Y. Kamiya, Combining the Photocatalyst Pt/TiO2 and the Nonphotocatalyst SnPd/Al2O3 for Effective Photocatalytic Purification of Groundwater Polluted with Nitrate, ACS Catal., 2014, 4, 2207–2215.

    Article  CAS  Google Scholar 

  39. G. Chen, M. Sun, Q. Wei, Z. Ma and B. Du, Efficient photo-catalytic reduction of aqueous Cr(VI) over CaSb2O5(OH)2 nanocrystals under UV light illumination, Appl. Catal., B, 2012, 125, 282–287.

    Article  CAS  Google Scholar 

  40. L. S. Zhang, K. H. Wong, H. Y. Yip, C. Hu, J. C. Yu, C. Y. Chan and P. K. Wong, Effective photocatalytic disinfection of E. coli K-12 using AgBr-Ag-Bi 2WO6 nanojunction system irradiated by visible light: The role of diffusing hydroxyl radicals, Environ. Sci. Technol., 2010, 44, 1392–1398.

    Article  CAS  PubMed  Google Scholar 

  41. S. Liu, N. Zhang, Z. R. Tang and Y. J. Xu, Synthesis of one-dimensional CdS@TiO2 core-shell nanocomposites photo-catalyst for selective redox: The dual role of TiO2 shell, ACS Appl. Mater. Interfaces, 2012, 4, 6378–6385.

    Article  CAS  PubMed  Google Scholar 

  42. J. Cao, X. Li, H. Lin, S. Chen and X. Fu, In situ preparation of novel p–n junction photocatalyst BiOI/(BiO)2CO3 with enhanced visible light photocatalytic activity, J. Hazard. Mater., 2012, 239–240, 316–324.

    Article  PubMed  CAS  Google Scholar 

  43. H. Dai, S. Zhang, Z. Hong, X. Li, G. Xu, Y. Lin and G. Chen, Enhanced Photoelectrochemical Activity of a Hierarchical-Ordered TiO2 Mesocrystal and Its Sensing Application on a Carbon Nanohorn Support Scaffold, Anal. Chem., 2014, 86, 6418–6424.

    Article  CAS  PubMed  Google Scholar 

  44. L. M. Pastrana-Martínez, S. Morales-Torres, A. G. Kontos, N. G. Moustakas, J. L. Faria, J. M. Doña-Rodríguez, P. Falaras and A. M. T. Silva, TiO2, surface modified TiO2 and graphene oxide-TiO2 photocatalysts for degradation of water pollutants under near-UV/Vis and visible light, Chem. Eng. J., 2013, 224, 17–23.

    Article  CAS  Google Scholar 

  45. M. Yin, Z. Li, J. Kou and Z. Zou, Mechanism investigation of visible light-induced degradation in a heterogeneous TiO2/eosin Y/rhodamine B system, Environ. Sci. Technol., 2009, 43, 8361–8366.

    Article  CAS  PubMed  Google Scholar 

  46. Y. Chen, S. Yang, K. Wang and L. Lou, Role of primary active species and TiO2 surface characteristic in UV-illuminated photodegradation of Acid Orange 7, J. Photochem. Photobiol., A, 2005, 172, 47–54.

    Article  CAS  Google Scholar 

  47. S. Song, F. Hong, Z. He, Q. Cai and J. Chen, J. Colloid Interface Sci., 2012, 378, 159–166.

    Article  CAS  PubMed  Google Scholar 

  48. M. Chen and W. Chu, Degradation of antibiotic norfloxacin in aqueous solution by visible-light-mediated C-TiO2 photocatalysis, J. Hazard. Mater., 2012, 219–220, 183–189.

    Article  PubMed  CAS  Google Scholar 

  49. A. Pandikumar and R. Ramaraj, Titanium dioxide-gold nanocomposite materials embedded in silicate sol-gel film catalyst for simultaneous photodegradation of hexavalent chromium and methylene blue, J. Hazard. Mater., 2012, 203–204, 244–250.

    Article  PubMed  CAS  Google Scholar 

  50. C. Zhao, A. Krall, H. Zhao, Q. Zhang and Y. Li, Ultrasonic spray pyrolysis synthesis of Ag/TiO2 nanocomposite photocatalysts for simultaneous H2 production and CO2 reduction, 2012, vol. 37.

  51. F. Sheng, X. Zhu, W. Wang, H. Bai, J. Liu, P. Wang, R. Zhang, L. Han and J. Mu, Synthesis of novel polyoxometalate K6ZrW11O39Sn·12H2O and photocatalytic degradation aqueous azo dye solutions with solar irradiation, J. Mol. Catal. A: Chem., 2014, 393, 232–239.

    Article  CAS  Google Scholar 

  52. L. Tian, L. Ye, J. Liu and L. Zan, Catal. Commun., 2012, 17, 99–103.

    Article  CAS  Google Scholar 

  53. K. Villa, S. Murcia-López, T. Andreu and J. R. Morante, Mesoporous WO3 photocatalyst for the partial oxidation of methane to methanol using electron scavengers, Appl. Catal., B, 2015, 163, 150–155.

    Article  CAS  Google Scholar 

  54. L. A. Betancourt-Buitrago, C. Vásquez, L. Veitia, O. Ossa-Echeverry, J. Rodriguez-Vallejo, J. Barraza-Burgos, N. Marriaga-Cabrales and F. Machuca-Martínez, An approach to utilize the artificial high power LED UV-A radiation in photoreactors for the degradation of methylene blue, Photochem. Photobiol. Sci., 2017, 16, 79–85.

    Article  CAS  PubMed  Google Scholar 

  55. L. Bridgewater, Standard Methods for Examination of Water and Wastewater, American Public Health Association, Washington DC, 22 Illustr., 2012.

  56. H. J. Kuhn, S. E. Braslavsky and R. Schmidt, Chemical actinometry (IUPAC Technical Report), Pure Appl. Chem., 2004, 76, 2105–2146.

    Article  CAS  Google Scholar 

  57. T. Lehóczki, É. Józsa and K. Osz, Ferrioxalate actinometry with online spectrophotometric detection, J. Photochem. Photobiol., A, 2013, 251, 63–68.

    Article  CAS  Google Scholar 

  58. M. L. Satuf, M. J. Pierrestegui, L. Rossini, R. J. Brandi and O. M. Alfano, Kinetic modeling of azo dyes photocatalytic degradation in aqueous TiO2 suspensions. Toxicity and biodegradability evaluation, Catal. Today, 2011, 161, 121–126.

    Article  CAS  Google Scholar 

  59. T. Aillet, K. Loubiere, O. Dechy-Cabaret and L. Prat, Accurate Measurement of the Photon Flux Received Inside Two Continuous Flow Microphotoreactors by Actinometry, Int. J. Chem. React. Eng., 2014, 12, 1–13.

    Article  CAS  Google Scholar 

  60. K. Davididou, J. M. Monteagudo, E. Chatzisymeon, A. Durán and A. J. Expósito, Degradation and mineralization of antipyrine by UV-A LED photo-Fenton reaction intensified by ferrioxalate with addition of persulfate, Sep. Purif. Technol., 2017, 172, 227–235.

    Article  CAS  Google Scholar 

  61. M. J. López-Muñoz, J. Aguado, R. van Grieken and J. Marugán, Simultaneous photocatalytic reduction of silver and oxidation of cyanide from dicyanoargentate solutions, Appl. Catal., B, 2009, 86, 53–62.

    Article  CAS  Google Scholar 

  62. M. Canterino, I. Di Somma, R. Marotta and R. Andreozzi, Kinetic investigation of Cu(II) ions photoreduction in presence of titanium dioxide and formic acid., Water Res., 2008, 42, 4498–4506.

    Article  CAS  PubMed  Google Scholar 

  63. M. Valari, A. Antoniadis, D. Mantzavinos and I. Poulios, Photocatalytic reduction of Cr(VI) over titania suspensions, Catal. Today, 2015, 252, 190–194.

    Article  CAS  Google Scholar 

  64. L. C. Ferreira, M. S. Lucas, J. R. Fernandes and P. B. Tavares, Photocatalytic oxidation of Reactive Black 5 with UV-A LEDs, J. Environ. Chem. Eng., 2016, 4, 109–114.

    Article  CAS  Google Scholar 

  65. M. I. Litter, Heterogeneous photocatalysis Transition metal ions in photocatalytic systems, Appl. Catal., B, 1999, 23, 89–114.

    Article  CAS  Google Scholar 

  66. X. Zhang, L. Song, X. Zeng and M. Li, Effects of Electron Donors on the TiO2 Photocatalytic Reduction of Heavy Metal Ions under Visible Light, Energy Procedia, 2012, 17, 422–428.

    Article  CAS  Google Scholar 

  67. D. D. Kuhn and T. C. Young, Photolytic degradation of hexacyanoferrate (II) in aqueous media: The determination of the degradation kinetics, Chemosphere, 2005, 60, 1222–1230.

    Article  CAS  PubMed  Google Scholar 

  68. W. H. Koppenol and J. D. Rush, Reduction potential of the carbon dioxide/carbon dioxide radical anion: a comparison with other C1 radicals, J. Phys. Chem., 1987, 91, 4429–4430.

    Article  CAS  Google Scholar 

  69. T. G. Le, N. T. Nguyen, Q. T. Nguyen, J. De Laat and H. Y. Dao, Effect of Chloride and Sulfate Ions on the Photoreduction Rate of Ferric Ion in UV Reactor Equipped with a Low Pressure Mercury Lamp, J. Adv. Oxid. Technol., 2014, 17, 305–330.

    Google Scholar 

  70. M. Samarghandi, J. Yang, O. Giahi and M. Shirzad-siboni, Photocatalytic reduction of hexavalent chromium with illuminated amorphous FeOOH, Environ. Technol., 2014, 37–41.

  71. R. J. Tayade, T. S. Natarajan and H. C. Bajaj, Photocatalytic Degradation of Methylene Blue Dye Using Ultraviolet Light Emitting Diodes, Ind. Eng. Chem. Res., 2009, 48, 10262–10267.

    Article  CAS  Google Scholar 

  72. S. Bratsch, Standard electrode potentials and temperature coefficients in water at 298.15 K, J. Phys. Chem. Ref. Data, 1989, 18, 1–21.

    Article  CAS  Google Scholar 

  73. A. J. Bard, R. Parsons and J. Jordan, Standard potentials in aqueous solution, Marcel Dekker, New York, N.Y., 1983.

  74. D. Farreras and J. G. Curcó, Eliminación de contaminantes por Fotocatálisis Heterogenea.(Blesa, M. A.)(Gráfica 12 y 50,), 2001.

  75. M. Barakat, Removal of toxic cyanide and Cu(II) Ions from water by illuminated TiO2 catalyst, Appl. Catal., B, 2004, 53, 13–20.

    Article  CAS  Google Scholar 

  76. J. K. Yang, S. M. Lee, M. Farrokhi, O. Giahi and M. Shirzad Siboni, Photocatalytic removal of Cr(VI) with illuminated TiO2, Desalin. Water Treat., 2012, 46, 375–380.

    Article  CAS  Google Scholar 

  77. X. Wang, S. O. Pehkonen and A. K. Ray, Removal of Aqueous Cr(VI) by a Combination of Photocatalytic Reduction and Coprecipitation, Ind. Eng. Chem. Res., 2004, 43, 1665–1672.

    Article  CAS  Google Scholar 

  78. N. Daneshvar, A. Aleboyeh and A. R. Khataee, The evaluation of electrical energy per order (E Eo) for photooxidative decolorization of four textile dye solutions by the kinetic model, Chemosphere, 2005, 59, 761–767.

    Article  CAS  PubMed  Google Scholar 

  79. D. Li, Q. Zhu, C. Han, Y. Yang, W. Jiang and Z. Zhang, Photocatalytic degradation of recalcitrant organic pollutants in water using a novel cylindrical multi-column photoreactor packed with TiO2-coated silica gel beads, J. Hazard. Mater., 2015, 285, 398–408.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Machuca-Martínez.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/c8pp00281a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Betancourt-Buitrago, L.A., Ossa-Echeverry, O.E., Rodriguez-Vallejo, J.C. et al. Anoxic photocatalytic treatment of synthetic mining wastewater using TiO2 and scavengers for complexed cyanide recovery. Photochem Photobiol Sci 18, 853–862 (2019). https://doi.org/10.1039/c8pp00281a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c8pp00281a

Navigation