Skip to main content
Log in

Intramolecular and interfacial dynamics of triarylamine-based hole transport materials

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

We present steady-state and time-resolved spectroscopic investigations combined with detailed kinetic modelling for the triarylamine derivatives X60 and PTAA which serve as hole transport materials (HTMs) in perovskite solar cells and represent model compounds for organic electronic materials. Photoexcitation of the spiro-fluorene-xanthene X60 populates its S1 state which decays via intersystem crossing (ISC) as well as fluorescence and internal conversion on a nanosecond time scale. Photoexcitation of the PTAA polymer leads to the formation of singlet excitons which relax and migrate in the time regime from a few to about a hundred picoseconds and decay to the ground state with a lifetime of ca. 900 ps. Both X60 and PTAA exhibit efficient photoinduced electron injection into mesoporous TiO2 thin films forming radical cations with characteristic spectral bands, as confirmed by spectroelectrochemistry in solution. Photoluminescence (PL) experiments performed for the HTMs on methylammonium lead iodide perovskite deposited on mesoporous TiO2 show that small molecular HTMs, such as X60, quench the PL much better than the PTAA polymer. Ultrafast transient absorption experiments on the other hand suggest that the hole transfer at the interface between the perovskite and these HTMs is very fast, regardless of the type of HTM. It is therefore concluded that small molecular HTMs infiltrate much better into mesoporous structures and therefore more efficiently accept holes from the perovskite on such thin film architectures due to the better interfacial contact compared with their polymer-based counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Arora, M. Ibrahim Dar, A. Hinderhofer, N. Pellet, F. Schreiber, S. M. Zakeeruddin and M. Grätzel, Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%, Science, 2017, 358, 768–771.

    Article  CAS  PubMed  Google Scholar 

  2. J. Wang, K. Liu, L. Ma and X. Zhan, Triarylamine: Versatile Platform for Organic, Dye-Sensitized, and Perovskite Solar Cells, Chem. Rev., 2016, 116, 14675–14725.

    Article  CAS  PubMed  Google Scholar 

  3. T. Matsui, I. Petrikyte, T. Malinauskas, K. Domanski, M. Daskeviciene, M. Steponaitis, P. Gratia, W. Tress, J.-P. Correa-Baena, A. Abate, A. Hagfeldt, M. Grätzel, M. K. Nazeeruddin, V. Getautis and M. Saliba, Additive-Free Transparent Triarylamine-Based Polymeric Hole-Transport Materials for Stable Perovskite Solar Cells, ChemSusChem, 2016, 9, 2567–2571.

    Article  CAS  PubMed  Google Scholar 

  4. L. Calió, S. Kazim, M. Grätzel and S. Ahmad, Hole-Transport Materials for Perovskite Solar Cells, Angew. Chem., Int. Ed., 2016, 55, 14522–14545.

    Article  CAS  Google Scholar 

  5. B. Xu, D. Bi, Y. Hua, P. Liu, M. Cheng, M. Grätzel, L. Kloo, A. Hagfeldt and L. Sun, A low-cost spiro[fluorene-9,9′-xanthene]-based hole transport material for highly efficient solid-state dye-sensitized solar cells and perovskite solar cells, Energy Environ. Sci., 2016, 9, 873–877.

    Article  CAS  Google Scholar 

  6. K. Pydzinska, P. Florczak, G. Nowaczyk and M. Ziólek, Effects of different small molecule hole transporters on the performance and charge transfer dynamics of perovskite solar cells, Synth. Met., 2017, 232, 181–187.

    Article  CAS  Google Scholar 

  7. M. Maciejczyk, A. Ivaturi and N. Robertson, SFX as a low-cost ‘Spiro’ hole-transport material for efficient perovskite solar cells, J. Mater. Chem. A, 2016, 4, 4855–4863.

    Article  CAS  Google Scholar 

  8. R. Tiazkis, S. Paek, M. Daskeviciene, T. Malinauskas, M. Saliba, J. Nekrasovas, V. Jankauskas, S. Ahmad, V. Getautis and M. K. Nazeeruddin, Methoxydiphenylamine-substituted fluorene derivatives as hole transporting materials: role of molecular interaction on device photovoltaic performance, Sci. Rep., 2017, 7, 150.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. M. Franckevicius, A. Mishra, F. Kreuzer, J. Luo, S. M. Zakeeruddin and M. Grätzel, A dopant-free spirobi [cyclopenta[2,1-b:3,4-b′]-dithiophene] based hole-transport material for efficient perovskite solar cells, Mater. Horiz., 2015, 2, 613–618.

    Article  CAS  Google Scholar 

  10. J. Liu, Y. Wu, C. Qin, X. Yang, T. Yasuda, A. Islam, K. Zhang, W. Peng, W. Chen and L. Han, A dopant-free hole-transporting material for efficient and stable perovskite solar cells, Energy Environ. Sci., 2014, 7, 2963–2967.

    Article  CAS  Google Scholar 

  11. D. Bi, L. Yang, G. Boschloo, A. Hagfeldt and E. M. J. Johansson, Effect of Different Hole Transport Materials on Recombination in CH3NH3PbI3 Perovskite-Sensitized Mesoscopic Solar Cells, J. Phys. Chem. Lett., 2013, 4, 1532–1536.

    Article  CAS  PubMed  Google Scholar 

  12. H. Li, K. Fu, A. Hagfeldt, M. Grätzel, S. G. Mhaisalkar and A. C. Grimsdale, A Simple 3,4-Ethylenedioxythiophene Based Hole-Transporting Material for Perovskite Solar Cells, Angew. Chem., Int. Ed., 2014, 53, 4085–4088.

    Article  CAS  Google Scholar 

  13. H. Li, K. Fu, P. P. Boix, L. H. Wong, A. Hagfeldt, M. Grätzel, S. G. Mhaisalkar and A. C. Grimsdale, Hole-Transporting Small Molecules Based on Thiophene Cores for High Efficiency Perovskite Solar Cells, ChemSusChem, 2014, 7, 3420–3425.

    Article  CAS  PubMed  Google Scholar 

  14. J. R. Klein, M. Scholz, K. Oum and T. Lenzer, Photoinduced dynamics of the hole-transport material H101 in organic solvents and on mesoporous Al2O3 and TiO2 thin films, Phys. Chem. Chem. Phys., 2017, 19, 21748–21758.

    Article  CAS  PubMed  Google Scholar 

  15. J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandai, C.-S. Lim, J. A. Chang, Y. H. Lee, H.-J. Kim, A. Sarkar, M. K. Nazeeruddin, M. Grätzel and S. I. Seok, Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors, Nat. Photonics, 2013, 7, 486–491.

    Article  CAS  Google Scholar 

  16. W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo and S. I. Seok, High-performance photovoltaic perovskite layers fabricated through intramolecular exchange, Science, 2015, 348, 1234–1237.

    Article  CAS  PubMed  Google Scholar 

  17. M. Saliba, T. Matsui, K. Domanski, J.-Y. Seo, A. Ummadisingu, S. M. Zakeeruddin, J.-P. Correa-Baena, W. R. Tress, A. Abate, A. Hagfeidt and M. Grätzei, Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance, Science, 2016, 354, 206–209.

    Article  CAS  PubMed  Google Scholar 

  18. G.-W. Kim, G. Kang, J. Kim, G.-Y. Lee, H. I. Kim, L. Pyeon, J. Lee and T. Park, Dopant-free polymeric hole transport materials for highly efficient and stable perovskite solar cells, Energy Environ. Sci., 2014, 9, 2326–2333.

    Article  CAS  Google Scholar 

  19. N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo and S. I. Seok, Compositional engineering of perovskite materials for high-performance solar cells, Nature, 2015, 517, 476–480.

    Article  CAS  Google Scholar 

  20. S. Fantacci, F. De Angelis, M. K. Nazeeruddin and M. Grätzel, Electronic and Optical Properties of the Spiro-MeOTAD Hole Conductor in Its Neutral and Oxidized Forms: A DFT/TDDFT Investigation, J. Phys. Chem. C, 2011, 115, 23126–23133.

    Article  CAS  Google Scholar 

  21. E. L. Unger, A. Morandeira, M. Persson, B. Zietz, E. Ripaud, P. Leriche, J. Roncaii, A. Hagfeidt and G. Boschioo, Contribution from a hole-conducting dye to the photo-current in solid-state dye-sensitized solar cells, Phys. Chem. Chem. Phys., 2011, 13, 20172–20177.

    Article  CAS  PubMed  Google Scholar 

  22. J.-H. Yum, E. Baranoff, S. Wenger, M. K. Nazeeruddin and M. Grätzel, Panchromatic engineering for dye-sensitized solar cells, Energy Environ. Sci., 2011, 4, 842–857.

    Article  CAS  Google Scholar 

  23. Y. Shirota and H. Kageyama, Charge Carrier Transporting Molecular Materials and Their Applications in Devices, Chem. Rev., 2007, 107, 953–1010.

    Article  CAS  PubMed  Google Scholar 

  24. S. King, C. Rothe and A. Monkman, Triplet build in and decay of isolated polyspirobifluorene chains in dilute solution, J. Chem. Phys., 2004, 121, 10803–10808.

    Article  CAS  PubMed  Google Scholar 

  25. S. M. King, C. Rothe, D. Dai and A. P. Monkman, Femtosecond ground state recovery: Measuring the intersystem crossing yield of polyspirobifluorene, J. Chem. Phys., 2006, 124, 234903.

    Article  CAS  PubMed  Google Scholar 

  26. J. R. Klein, M. Scholz, K. Oum and T. Lenzer, Quantifying ultrafast charge carrier injection from methyl-ammonium lead iodide into the hole transport material H101 and mesoporous TiO2 using Vis-NIR transient absorption, Phys. Chem. Chem. Phys., 2017, 19, 17952–17959.

    Article  CAS  PubMed  Google Scholar 

  27. O. Flender, J. R. Klein, T. Lenzer and K. Oum, Ultrafast photoinduced dynamics of the organoiead trihaiide perovskite CH3NH3PbI3 on mesoporous TiO2 scaffolds in the 320-920 nm range, Phys. Chem. Chem. Phys., 2015, 17, 19238–19246.

    Article  CAS  PubMed  Google Scholar 

  28. K. Oum, P. W. Lohse, O. Flender, J. R. Klein, M. Scholz, T. Lenzer, J. Du and T. Oekermann, Ultrafast dynamics of the indoline dye D149 on electrodeposited ZnO and sintered ZrO2 and TiO2 thin films, Phys. Chem. Chem. Phys., 2012, 14, 15429–15437.

    Article  CAS  PubMed  Google Scholar 

  29. O. Flender, M. Scholz, J. R. Klein, K. Oum and T. Lenzer, Excited-state relaxation of the solar cell dye D49 in organic solvents and on mesoporous Ai2O3 and TiO2 thin films, Phys. Chem. Chem. Phys., 2016, 18, 26010–26019.

    Article  CAS  PubMed  Google Scholar 

  30. K. Oum, T. Lenzer, M. Scholz, D. Y. Jung, O. Sul, B. J. Cho, J. Lange and A. Müller, Observation of Ultrafast Carrier Dynamics and Phonon Relaxation of Graphene from the Deep-Ultraviolet to the Visible Region, J. Phys. Chem. C, 2014, 118, 6454–6461.

    Article  CAS  Google Scholar 

  31. A. L. Dobryakov, S. A. Kovalenko, A. Weigel, J. L. Pérez Lustres, J. Lange, A. Müller and N. P. Ernsting, Femtosecond pump/supercontinuum-probe spectroscopy: Optimized setup and signal analysis for single-shot spectral referencing, Rev. Sci. Instrum., 2010, 81, 113106.

    Article  CAS  PubMed  Google Scholar 

  32. K. Oum, O. Flender, P. W. Lohse, M. Scholz, A. Hagfeldt, G. Boschloo and T. Lenzer, Electron and hole transfer dynamics of a triarylamine-based dye with peripheral hole acceptors on TiO2 in the absence and presence of solvent, Phys. Chem. Chem. Phys., 2014, 16, 8019–8029.

    Article  CAS  PubMed  Google Scholar 

  33. T. Lenzer, F. Ehiers, M. Scholz, R. Oswald and K. Oum, Assignment of carotene S* state features to the vibrationally hot ground eiectronic state, Phys. Chem. Chem. Phys., 2010, 12, 8832–8839.

    Article  CAS  PubMed  Google Scholar 

  34. J. Arden-Jacob, K.-H. Drexhage, S. I. Druzhinin, M. Ekimova, O. Flender, T. Lenzer, K. Oum and M. Scholz, Ultrafast photoinduced dynamics of the 3,6-diaminoacridinium derivative ATTO 465 in solution, Phys. Chem. Chem. Phys., 2013, 15, 1844–1853.

    Article  CAS  PubMed  Google Scholar 

  35. J. Bonvoisin, J.-P. Launay, M. Van der Auweraer and F. C. De Schryver, Organic Mixed-Vaience Systems: Intervaience Transition in Partiy Oxidized Aromatic Polyamines. Electrochemicai and Optical Studies, J. Phys. Chem., 1994, 98, 5052–5057.

    Article  CAS  Google Scholar 

  36. S. Amthor, B. Noller and C. Lambert, UV/Vis/NIR spectral properties of triarylamines and their corresponding radical cations, Chem. Phys., 2005, 316, 141–152.

    Article  CAS  Google Scholar 

  37. A. Intaniwet, C. A. Mills, M. Shkunov, H. Thiem, J. L. Keddie and P. J. Sellin, Characterization of thick film poly(triaryiamine) semiconductor diodes for direct X-ray detection, J. Appl. Phys., 2009, 106, 064513.

    Article  CAS  Google Scholar 

  38. N. Banerji, S. Cowan, E. Vauthey and A. J. Heeger, Ultrafast Relaxation of the Poly(3-hexyithiophene) Emission Spectrum, J. Phys. Chem. C, 2011, 115, 9726–9739.

    Article  CAS  Google Scholar 

  39. K. Kanemoto, T. Sudo, I. Akai, H. Hashimoto, T. Karasawa, Y. Aso and T. Otsubo, Intrachain photoluminescence properties of conjugated polymers as revealed by long oligothiophenes and polythiophenes diluted in an inactive solid matrix, Phys. Rev. B: Condens. Matter Mater. Phys., 2006, 73, 235203.

    Article  CAS  Google Scholar 

  40. K. Neumann and M. Thelakkat, Perovskite solar cells involving poly(tetraphenyIbenzidine)s: investigation of hole carrier mobility, doping effects and photovoltaic properties, RSCAdv., 2014, 4, 43550–43559.

    CAS  Google Scholar 

  41. S. Westenhoff, W. J. D. Beenken, R. H. Friend, N. C. Greenham, A. Yartsev and V. Sundström, Anomalous Energy Transfer Dynamics due to Torsional Relaxation in a Conjugated Polymer, Phys. Rev. Lett., 2006, 97, 166804.

    Article  PubMed  CAS  Google Scholar 

  42. P. C. Tapping and T. W. Kee, Optical Pumping of Poly(3-hexylthiophene) Singlet Excitons Induces Charge Carrier Generation, J. Phys. Chem. Lett., 2014, 5, 1040–1047.

    Article  CAS  PubMed  Google Scholar 

  43. J. Guo, H. Ohkita, H. Benten and S. Ito, Near-IR Femtosecond Transient Absorption Spectroscopy of Ultrafast Polaron and Triplet Exciton Formation in Polythiophene Films with Different Regioregularities, J. Am. Chem. Soc., 2009, 131, 16869–16880.

    Article  CAS  PubMed  Google Scholar 

  44. S. N. CIafton, D. M. Huang, W. R. Massey and T. W. Kee, Femtosecond Dynamics of Excitons and Hole-Polarons in Composite P3HT/PCBM Nanoparticles, J. Phys. Chem. B, 2013, 117, 4626–4633.

    Article  CAS  Google Scholar 

  45. I. G. Scheblykin, A. Yartsev, T. Pullerits, V. Gulbinas and V. Sundström, Excited State and Charge Photogeneration Dynamics in Conjugated Polymers, J. Phys. Chem. B, 2007, 111, 6303–6321.

    Article  CAS  PubMed  Google Scholar 

  46. R. L. Christensen, M. M. Enriquez, N. L. Wagner, A. Y. Peacock-Villada, C. Scriban, R. R. Schrock, T. Polívka, H. A. Frank and R. R. Birge, Energetics and Dynamics of the Low-Lying Electronic States of Constrained Polyenes: Implications for Infinite Polyenes, J. Phys. Chem. A, 2013, 117, 1449–1465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. J. R. Klein, O. Flender, M. Scholz, K. Oum and T. Lenzer, Charge carrier dynamics of methylammonium lead iodide: from PbI2-rich to low-dimensional broadly emitting perovskites, Phys. Chem. Chem. Phys., 2016, 18, 10800–10808.

    Article  CAS  PubMed  Google Scholar 

  48. M. B. Price, J. Butkus, T. C. Jellicoe, A. Sadhanala, A. Briane, J. E. Halpert, K. Broch, J. M. Hodgkiss, R. H. Friend and F. Deschler, Hot-carrier cooling and photoinduced refractive index changes in organic-inorganic lead halide perovskites, Nat. Commun., 2015, 6, 8420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. J. B. Asbury, N. A. Anderson, E. Hao, X. Ai and T. Lian, Parameters Affecting Electron Injection Dynamics from Ruthenium Dyes to Titanium Dioxide Nanocrystalline Thin Film, J. Phys. Chem. B, 2003, 107, 7376–7386.

    Article  CAS  Google Scholar 

  50. R. Chang, J. H. Hsu, W. S. Fann, K. K. Liang, C. H. Chang, M. Hayashi, J. Yu, S. H. Lin, E. C. Chang, K. R. Chuang and S. A. Chen, Experimental and theoretical investigations of absorption and emission spectra of the light-emitting polymer MEH-PPV in solution, Chem. Phys. Lett., 2000, 317, 142–152.

    Article  CAS  Google Scholar 

  51. S. Tretiak, A. Saxena, R. L. Martin and A. R. Bishop, Conformational Dynamics of Photoexcited Conjugated Molecules, Phys. Rev. Lett., 2002, 89, 097402.

    Article  CAS  PubMed  Google Scholar 

  52. J. Jiménez-López, W. Cambarau, L. Cabau and E. Palomares, Charge Injection, Carriers Recombination and HOMO Energy Level Relationship in Perovskite Solar Cells, Sci. Rep., 2017, 7, 6101.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

Financial support by the DFG for KO and TL through grants OU 58/10-1 and LE 926/11-1 is gratefully acknowledged. We are indebted to K.-H. Drexhage and J. Arden-Jacob (ATTO-TEC GmbH) who allowed us to use their TCSPC setup. The oven for preparing the mesoporous TiO2 thin films was kindly provided by J. Weber and J. Schmedt auf der Günne (University of Siegen). We thank T. Kowald and R. H. F. Trettin (University of Siegen) for the XRD measurements as well as N. P. Ernsting (Humboldt University Berlin, Germany), J. L. Pérez Lustres (University of Heidelberg, Germany), J. Troe, K. Luther, J. Schroeder and A. M. Wodtke (Georg August University Göttingen, Germany) for their continuous support and advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kawon Oum.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klein, J.R., Scholz, M., Oum, K. et al. Intramolecular and interfacial dynamics of triarylamine-based hole transport materials. Photochem Photobiol Sci 17, 722–733 (2018). https://doi.org/10.1039/c8pp00030a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c8pp00030a

Navigation