Skip to main content
Log in

Spectral properties of ionic benzotristhiazole based donor-acceptor NLO-phores in polymer matrices and their one- and two-photon cellular imaging ability

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

A series of ionic benzotristhiazolium (BTT) push-pull chromophores, with different nitrogen donor groups and different lengths of conjugated bridges, was successfully doped in polar polymer matrices (PVC and PSS). The spectral (photophysical) properties of their low concentration thin polymeric films are compared with those in solution and are discussed in terms of matrix polarity/viscosity influence, specific polymer-chromophore interaction, structure-spectral property relationship and Twisted Intramolecular Charge-Transfer (TICT) state formation. The elimination of a non-emissive phantom and TICT state formation by restricted intramolecular rotations in the polymer matrix or viscous solvent results in a relatively high φF of all the investigated NLO-phores; particularly for near-infrared NIR molecular rotors bearing diphenylamino and julolidine donor groups. Because of cationic characteristics, small molecular weight, calculated high second hyperpolarizability and significant emission efficiency dependence on surroundings’ viscosity (rigidochromic effect), two dyes were chosen as candidates for potential fluorescent probes for one-photon (1P) and two photon (2P) cellular imaging. The selected BTT NLO-phore with a julolidine donor is promising as a mitochondria-specific fluorescent small molecular probe for live cell super-resolution imaging with low cytotoxicity and good photostability, and is also potentially suitable for super-resolution STED imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Jiang, Z. Xue, Y. Li, H. Liu and W. Yang, J. Mater. Chem. C, 2013, 1, 5694–5700, DOI: 10.1039/C3TC31228C.

    Article  CAS  Google Scholar 

  2. G. T. Dempsey, M. Bates, W. E. Kowtoniuk, D. R. Liu, R. Y. Tsien and X. Zhuang, J. Am. Chem. Soc., 2009, 131, 18192–18193, DOI: 10.1021/ja904588g.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. V. Aubert, V. Guerchais, E. Ishow, K. Hoang-Thi, I. Ledoux, K. Nakatani and H. Le Bozec, Angew. Chem., Int. Ed., 2008, 47, 577–580, DOI: 10.1002/anie.200704138.

    Article  CAS  Google Scholar 

  4. M. Ipuy, C. Billon, G. Micouin, J. Samarut, C. Andraud and Y. Bretonnière, Org. Biomol. Chem., 2014, 12, 3641–3648, DOI: 10.1039/C4OB00147H.

    Article  CAS  PubMed  Google Scholar 

  5. K. Kikuchi, Chem. Soc. Rev., 2010, 39, 2048–2053, DOI: 10.1039/B819316A.

    Article  CAS  PubMed  Google Scholar 

  6. C. Barsu, R. Cheaib, S. Chambert, Y. Queneau, O. Maury, D. Cottet, H. Wege, J. Douady, Y. Bretonnière and C. Andraud, Org. Biomol. Chem., 2010, 8, 142–150, DOI: 10.1039/B915654B.

    Article  CAS  PubMed  Google Scholar 

  7. J. F. Lovell, T. W. B. Liu, J. Chen and G. Zheng, Chem. Rev., 2010, 110, 2839–2857, DOI: 10.1021/cr900236h.

    Article  CAS  PubMed  Google Scholar 

  8. A. B. Ormond and H. S. Freeman, Materials, 2013, 6, 817–840, DOI: 10.3390/ma6030817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. A. Mishra, M. K. R. Fischer and P. Bäuerle, Angew. Chem., Int. Ed., 2009, 48, 2474–2499, DOI: 10.1002/ anie.200804709.

    Article  CAS  Google Scholar 

  10. J. N. Clifford, E. Martínez-Ferrero, A. Viterisi and E. Palomares, Chem. Soc. Rev., 2011, 40, 1635–1646, DOI: 10.1039/B920664G.

    Article  CAS  PubMed  Google Scholar 

  11. Y. Wu and W. Zhu, Chem. Soc. Rev., 2013, 42, 2039–2058, DOI: 10.1039/ C2CS35346F

    Article  PubMed  Google Scholar 

  12. M. Liang and J. Chen, Chem. Soc. Rev., 2013, 42, 3453–3488, DOI: 10.1039/C3CS35372A.

    Article  CAS  PubMed  Google Scholar 

  13. E. de Meulenaere, W. Q. Chen, S. van Cleuvenbergen, M. L. Zheng, S. Psilodimitrakoupoulos, R. Paesen, J. M. Taymans, M. Ameloot, J. Vanderleyden, P. Loza-Alvarez, X. M. Duan and K. Clays, Chem. Sci., 2012, 3, 984–995, DOI: 10.1039/C2SC00771A.

    Article  CAS  Google Scholar 

  14. M. L. Zheng, K. Fujita, W. Q. Chen, N. I. Smith, X. M. Duan and S. Kawata, ChemBioChem, 2011, 12, 52–55, DOI: 10.1002/cbic.201000593.

    Article  CAS  PubMed  Google Scholar 

  15. C. Huang, M. M. Sartin, N. Siegel, M. Cozzuol, Y. Zhang, J. M. Hales, S. Barlow, J. W. Perry and S. R. Marder, J. Mater. Chem., 2011, 21, 16119–16128, DOI: 10.1039/ C1JM12566D.

    Article  CAS  Google Scholar 

  16. L. Beverina, M. Crippa, M. Landenna, R. Ruffo, P. Salice, F. Silvestri, S. Versari, A. Villa, L. Ciaffoni, E. Collini, C. Ferrante, S. Bradamente, C. M. Mari, R. Bozio and G. Pagani, J. Am. Chem. Soc., 2008, 130, 1894–1902, DOI: 10.1021/ja075933a.

    Article  CAS  PubMed  Google Scholar 

  17. F. Hao, X. Zhang, Y. Tian, H. Zhou, L. Li, J. Wu, S. Zhang, J. Yang, B. Jin, X. Tao, G. Zhou and M. Jiang, J. Mater. Chem., 2009, 19, 9163–9169, DOI: 10.1039/B914656C.

    Article  CAS  Google Scholar 

  18. J. Lott, C. Ryan, B. Valle, J. R. Johnson, III D. A. Schiraldi, J. Shan, K. D. Singer and C. Weder, Adv. Mater., 2011, 23, 2425–2429, DOI: 10.1002/adma.201100458.

    Article  CAS  PubMed  Google Scholar 

  19. S. Maruo and J. T. Fourkas, Laser Photonics Rev., 2008, 2, 100–111, DOI: 10.1002/lpor.200710039.

    Article  CAS  Google Scholar 

  20. J. E. Reeve, H. L. Anderson and K. Clays, Phys. Chem. Chem. Phys., 2010, 12, 13484–13498, DOI: 10.1039/C003720F.

    Article  CAS  PubMed  Google Scholar 

  21. P. Hrobárik, I. Sigmundová, P. Zahradník, P. Kasák, V. Arion, E. Franz and K. Clays, J. Phys. Chem. C, 2010, 114, 22289–22302, DOI: 10.1021/jp108623d.

    Article  CAS  Google Scholar 

  22. A. Abbotto, L. Beverina, R. Bozio, A. Facchetti, C. Ferrante, G. A. Pagani, D. Pedron and R. Signorini, Org. Lett., 2002, 4, 1495–1498, DOI: 10.1021/ol025703v.

    Article  CAS  PubMed  Google Scholar 

  23. M. M. M. Raposo, A. M. C. Fonseca, M. C. R. Castro, M. Belsley, M. F. S. Cardoso, L. M. Carvalho and P. J. Coelho, Dyes Pigm., 2011, 91, 62–73, DOI: 10.1016/ j.dyepig.2011.02.012.

    Article  CAS  Google Scholar 

  24. M. M. M. Raposo, M. C. R. Castro, M. Belsley and A. M. C. Fonseca, Dyes Pigm., 2011, 91, 454–465, DOI: 10.1016/j.dyepig.2011.05.007.

    Article  CAS  Google Scholar 

  25. P. J. Coelho, M. C. R. Castro, A. M. C. Fonseca and M. M. M. Raposo, Dyes Pigm., 2012, 92, 745–748, DOI: 10.1016/j.dyepig.2011.06.019.

    Article  CAS  Google Scholar 

  26. M. S. Wong, C. Bosshard and P. Günter, Adv. Mater., 1997, 9, 837–842, DOI: 10.1002/adma.19970091016.

    Article  CAS  Google Scholar 

  27. T. Taniuchi, S. Ikeda, S. Okada and H. Nakanishi, Jpn. J. Appl. Phys., 2005, 44, L652–L654, DOI: 10.1143/ JJAP.44.L652

    Article  CAS  Google Scholar 

  28. A. Schneider, M. Neis, M. Stillhart, B. Ruiz, R. U. A. Khan and P. Günter, J. Opt. Soc. Am. B, 2006, 23, 1822–1835, DOI: 10.1364/JOSAB.23.001822.

    Article  CAS  Google Scholar 

  29. B. J. Coe, J. A. Harris, J. J. Hall, B. S. Brunschwig, S. T. Hung, W. Libaers, K. Clays, S. J. Coles, P. N. Horton, M. E. Light, M. B. Hursthouse, J. Garin and J. Orduna, Chem. Mater., 2006, 18, 5907–5918, DOI: 10.1021/ cm061594t.

    Article  CAS  Google Scholar 

  30. T. Cañeque, A. M. Cuadro, J. A. Builla, J. P. Moreno, K. Clays, G. Marcelo, F. Mendicuti, O. Castaño, J. L. Andrés and J. J. Vaquero, J. Org. Chem., 2010, 33, 6323–6330, DOI: 10.1002/ejoc.201000816.

    Google Scholar 

  31. E. Franz, E. C. Harper, B. J. Coe, P. Zahradnik, K. Clays and A. Asselberghs, Organic Optoelectronics and Photonics III, in Proc. of SPIE, ed. P. L. Heremans, M. Muccini and E. I. Meulenkamp, 2008, vol. 6999, p. 699923.

    Article  CAS  Google Scholar 

  32. A. Fülöpová, P. Magdolen, I. Sigmundová, P. Zahradník, E. Rakovsky and M. Cigáŭ, J. Mol. Struct., 2012, 1027, 70–80, DOI: 10.1016/j.molstruc.2012.06.018.

    Article  CAS  Google Scholar 

  33. A. Čibová, P. Magdolen, A. Fülöpová and P. Zahradník, Chem. Pap., 2013, 67, 110–116, DOI: 10.2478/s11696-012-0251-2.

    Article  CAS  Google Scholar 

  34. A. Čibová, P. Magdolen, A. Fülöpová, J. Kozíšek, M. Cigáŭ and P. Zahradník, Tetrahedron, 2015, 71, 315–323, DOI: 10.1016/j.tet.2014.11.047.

    Article  CAS  Google Scholar 

  35. N. Turro, M. Gratzel and A. Braun, Angew. Chem., Int. Ed. Engl., 1980, 19, 675–696, DOI: 10.1002/anie.198006751.

    Article  Google Scholar 

  36. R. P. Haugland, Handbook of fluorescent probes and research products, Molecular Probes Inc., Eugene, 9th edn, 2002.

    Google Scholar 

  37. P. Selvin, Science, 1992, 257, 885–886, DOI: 10.1126/ science.1502555.

    Article  CAS  PubMed  Google Scholar 

  38. H. Zhu, J. Fan, J. Du and X. Peng, Acc. Chem. Res., 2016, 49, 2115–2126, DOI: 10.1021/acs.accounts.6b00292.

    Article  CAS  PubMed  Google Scholar 

  39. D. C. Wallace, Science, 1999, 283, 1482–1488, DOI: 10.1126/ science.283.5407.1482.

    Article  CAS  PubMed  Google Scholar 

  40. Haugland {etet al.}, Cyclic-Substituted Unsymmetrical Cyanine Dyes, USOO5436134A, 1995.

    Google Scholar 

  41. V. B. Kovalska, D. V. Kryvorotenko, A. O. Balanda, M. Y. Losytskyy, V. P. Tokar and S. M. Yarmoluk, Dyes Pigm., 2005, 67, 47–54, DOI: 10.1016/j.dyepig.2004.10.007.

    Article  CAS  Google Scholar 

  42. V. P. Tokar, M. Y. Losytskyy, V. B. Kovalska, D. Kryvorotenko, A. Balanda, V. Prokopets, M. Galak, I. Dmytruk, V. Yashchuk and S. Yarmoluk, J. Fluoresc., 2006, 16, 783–791, DOI: 10.1007/s10895-006-0127-3.

    Article  CAS  PubMed  Google Scholar 

  43. V. M. Yashchuk, S. M. Yarmoluk, V. Y. Kudrya, M. Y. Losytskyy, V. P. Tokar, V. M. Kravchenko, V. B. Kovalska, A. O. Balanda and D. V. Kryvorotenko, Adv. Opt. Technol., 2008, 1–11, DOI: 10.1155/2008/908246.

    Google Scholar 

  44. C. Peinado, E. F. Salvador, J. Baselga and F. Catalina, Macromol. Chem. Phys., 2001, 202, 1924–1934, DOI: 10.1002/1521-3935(20010601)202:9<1924.

    Article  CAS  Google Scholar 

  45. W. Baumann, H. Bischof, J. C. Fröling, C. Brittinger, W. Rettig and K. Rotkiewicz, J. Photochem. Photobiol., A, 1992, 64, 49–72, DOI: 10.1016/1010-6030(92)85093-A.

    Article  CAS  Google Scholar 

  46. W. Rettig, Angew. Chem., Int. Ed. Engl., 1986, 25, 971–988, DOI: 10.1002/anie.198609711.

    Article  Google Scholar 

  47. R. O. Loufty, in Photophysical and Photochemicals Tools in Polymer Science. Conformations, Dynamics, ed. M. A. Winnik, NATO ASI Series, Netherlands, 1985, vol. 182, pp. 429–448.

  48. H. P. M. de Oliveira and M. H. Gehlen, J. Lumin., 2006, 121, 544–552, DOI: 10.1016/j.jlumin.2005.12.046.

    Article  CAS  Google Scholar 

  49. J. M. Huang, V. Bekiari, P. Lianos and S. Couris, J. Lumin., 1999, 81, 285–291, DOI: 10.1016/S0022-2313(99)00010-1.

    Article  CAS  Google Scholar 

  50. F. Würthner, S. Yao, T. Debaerdemaeker and R. Wortmann, J. Am. Chem. Soc., 2002, 124, 9431–9447, DOI: 10.1021/ ja020168f.

    Article  PubMed  CAS  Google Scholar 

  51. D. M. Burland, R. D. Miller and C. A. Walsh, Chem. Rev., 1994, 94, 31–75, DOI: 10.1021/cr00025a002.

    Article  CAS  Google Scholar 

  52. L. R. Dalton, W. H. Steier, B. H. Robinson, C. Zhang, A. Ren, S. Garner, A. Chen, T. Londergan, L. Irwin, B. Carlson, L. Fifield, G. Phelan, C. Kincaid, J. Amend and A. Jen, J. Mater. Chem., 1999, 9, 1905–1920, DOI: 10.1039/ A902659B.

    Article  CAS  Google Scholar 

  53. F. Würthner and S. Yao, Angew. Chem., Int. Ed., 2000, 39, 1978–1981, DOI: 10.1002/1521-3773(20000602) 39:11<1978.

    Article  Google Scholar 

  54. G. J. Ashwell, K. Skjonnemand, G. A. N. Paxton, D. W. Allen, J. P. L. Mifflin and X. Li, J. Mater. Chem., 2001, 11, 1351–1356, DOI: 10.1039/B009914G.

    Article  CAS  Google Scholar 

  55. Ai Priimagi, M. Kaivola, M. Virkki, F. J. Rodríguez and M. Kauranen, J. Nonlinear Opt. Phys. Mater., 2010, 19, 57–73, DOI: 10.1142/S0218863510005091.

    Article  CAS  Google Scholar 

  56. J. N. Demas and G. A. Crosby, J. Phys. Chem., 1971, 75, 991–1024, DOI: 10.1021/j100678a001.

    Article  Google Scholar 

  57. R. A. Velapoldi and H. H. Tonnesen, J. Fluoresc., 2004, 14, 465–472, DOI: 10.1023/B:JOFL.0000031828.96368. c1.

    Article  CAS  PubMed  Google Scholar 

  58. A. Kawski, A. Kubicki, B. Kuklinski and I. Gryczynski, J. Photochem. Photobiol., A, 1993, 71, 161–167, DOI: 10.1016/1010-6030(93)85068-J.

    Article  CAS  Google Scholar 

  59. D. Chorvát Jr. and A. Chorvátová, Eur. Biophys. J., 2006, 36, 73–83, DOI: 10.1007/s00249-006-0104-4.

    Article  PubMed  Google Scholar 

  60. O. Treutler and R. Ahlrichs, J. Chem. Phys., 1995, 102, 346–354, DOI: 10.1063/1.469408.

    Article  CAS  Google Scholar 

  61. A. D. Becke, J. Chem. Phys., 1993, 98, 5648–5652, DOI: 10.1063/1.464913

    Article  CAS  Google Scholar 

  62. C. Lee, W. Yang and R. G. Parr, Phys. Rev. B: Condens. Matter, 1988, 37, 785–789, DOI: 10.1103/ PhysRevB.37.785.

    Article  CAS  Google Scholar 

  63. A. Schäfer, C. Huber and R. Ahlrichs, J. Chem. Phys., 1994, 100, 5829–5835, DOI: 10.1063/1.467146

    Article  Google Scholar 

  64. F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7, 3297–3305, DOI: 10.1039/ B508541A.

    Article  CAS  PubMed  Google Scholar 

  65. TURBOMOLE V6.6 2014, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007; available from http://www.turbomole.com.

  66. T. Yanai, D. Tew and N. Handy, Chem. Phys. Lett., 2004, 393, 51–57, DOI: 10.1016/j.cplett.2004.06.011.

    Article  CAS  Google Scholar 

  67. R. Ditchfield, W. J. Hehre and J. A. Pople, J. Chem. Phys., 1971, 54, 724–728, DOI: 10.1063/1.1674902

    Article  CAS  Google Scholar 

  68. W. J. Hehre, R. Ditchfield and J. A. Pople, J. Chem. Phys., 1972, 56, 2257–2261, DOI: 10.1063/1.1677527

    Article  CAS  Google Scholar 

  69. P. C. Hariharan and J. A. Pople, Theor. Chem. Acc., 1973, 28, 213–222, DOI: 10.1007/BF00533485

    Article  CAS  Google Scholar 

  70. M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, D. J. DeFrees, J. A. Pople and M. S. Gordon, J. Chem. Phys., 1982, 77, 3654–3665, DOI: 10.1063/1.444267

    Article  CAS  Google Scholar 

  71. V. A. Rassolov, M. A. Ratner, J. A. Pople, P. C. Redfern and L. A. Curtiss, J. Comput. Chem., 2001, 22, 976–984, DOI: 10.1002/ jcc.1058.

    Article  CAS  Google Scholar 

  72. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09, revision D.01, Gaussian, Inc., Wallingford CT, 2013.

    Google Scholar 

  73. D. Laage, W. H. Thompson, M. Blanchard-Desce and J. T. Hynes, J. Phys. Chem. A, 2003, 107, 6032–6046, DOI: 10.1021/jp0276597.

    Article  CAS  Google Scholar 

  74. J. Kabatc, B. Jedrzejewska, P. Orlinski and J. Paczkowski, Spectrochim. Acta, Part A, 2005, 62, 115–125, DOI: 10.1016/ j.saa.2004.12.014.

    Article  CAS  Google Scholar 

  75. A. Gaplovsky, J. Donovalova, P. Magdolen, S. Toma and P. Zahradnik, Spectrochim. Acta, Part A, 2002, 58, 363–371, DOI: 10.1016/S1386-1425(01)00545-5.

    Article  Google Scholar 

  76. J. S. Yang and Ch. J. Lin, J. Photochem. Photobiol., A, 2015, 312, 107–120, DOI: 10.1016/j.jphotochem.2015.05.031.

    Article  CAS  Google Scholar 

  77. P. Klán and J. Wirz, Rate constants of internal conversion, the energy gap law; Rate constants of intersystemcrossing, El Sayed rules, in Photochemistry of Organic Compounds: From Concepts To Practice, ed. J. Coxon, P. Bailey, L. Field, J. A. Gladysz, P. Parsons and P. Stang, John Wiley & Sons Ltd, Chichester, 2009, pp. 35–39.

    Chapter  Google Scholar 

  78. J. Mei, N. L. C. Leung, R. T. K. Kwok, J. W. Y. Lam and B. Z. Tang, Chem. Rev., 2015, 115, 11718–11940, DOI: 10.1021/acs.chemrev.5b00263.

    Article  CAS  PubMed  Google Scholar 

  79. Y. Yamaguchi, Y. Matsubara, T. Ochi, T. Wakamiya and Z. Yoshida, J. Am. Chem. Soc., 2008, 130, 13867–13869, DOI: 10.1021/ja8040493.

    Article  CAS  PubMed  Google Scholar 

  80. W. Rettig and R. Lapouyade, Fluorescence probes based on twisted intramolecular charge transfer (TICT) states and other adiabatic photoreactions, in Topics in fluorescence spectroscopy. Probe Design and chemical Sensing, ed. J. R. Lakowicz, Plenum Press, New York, 1994, vol. 4, pp. 118–119.

    Google Scholar 

  81. M. Danko, E. Szabo and P. Hrdlovič, Dyes Pigm., 2011, 90, 129–138, DOI: 10.1016/j.dyepig.2010.12.006.

    Article  CAS  Google Scholar 

  82. C. Kósa, M. Danko and P. Hrdlovič, J. Fluoresc., 2012, 22, 1371–1381, DOI: 10.1007/s10895-012-1076-7.

    Article  PubMed  CAS  Google Scholar 

  83. M. Danko, A. Andics, C. Kosa, P. Hrdlovic and D. Vegh, Dyes Pigm., 2012, 92, 1257–1265, DOI: 10.1016/j.dyepig.2011.07.011.

    Article  CAS  Google Scholar 

  84. M. Danko, P. Hrdlovič, J. Kulhánek and F. Bureš, J. Fluoresc., 2011, 21, 1779–1787, DOI: 10.1007/s10895-011-0872-9.

    Article  CAS  PubMed  Google Scholar 

  85. J.-S. Yang and C.-J. Lin, J. Photochem. Photobiol., A, 2015, 312, 107–120, DOI: 10.1016/j.jphotochem.2015. 05.031.

    Article  CAS  Google Scholar 

  86. Y. Zhang, X. Yue, B. Kim, S. Yao and K. D. Belfield, Chem. Eur. J., 2014, 20, 7249–7253, DOI: 10.1002/chem.201403003.

    Article  CAS  PubMed  Google Scholar 

  87. B. Wardle, Intramolecular Radiationless Transitions of Excited States, in Principles and Applications of Photochemistry, John Wiley & Sons Ltd, Chichester, 2009, pp. 79–81.

    Google Scholar 

  88. R. O. Loutfy, Pure Appl. Chem., 1986, 58, 1239–1248, DOI: 10.1002/chem.201403003.

    Article  CAS  Google Scholar 

  89. D. Li, X. Tian, A. Wang, L. Guan, J. Zheng, F. Li, S. Li, H. Zhou, J. Wu and Y. Tian, Chem. Sci., 2016, 7, 2257–2263, DOI: 10.1039/c5sc03956h.

    Article  CAS  PubMed  Google Scholar 

  90. Y. Ooyama, Y. Oda, T. Mizumo and J. Ohshita, Tetrahedron, 2013, 69, 1755–1760, DOI: 10.1016/j.tet.2012.12.033.

    Article  CAS  Google Scholar 

  91. K. Yamaguchi, T. Murai, Y. Tsuchiya, Y. Miwa, S. Kutsumizu, T. Sasamori and N. Tokitoh, RSC Adv., 2017, 7, 18132–18135, DOI: 10.1039/c7ra01896g.

    Article  CAS  Google Scholar 

  92. D. Su, C. L. Teoh, N. Gao, Q.-H. Xu and Y.-T. Chang, Sensors, 2016, 16, 1397–1405, DOI: 10.3390/s16091397.

    Article  CAS  PubMed Central  Google Scholar 

  93. T. Liu, X. Liu, D. R. Spring, X. Qian, J. Cui and Z. Xu, Sci. Rep., 2014, 4, 5418, DOI: 10.1038/srep05418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. A. Dragan, A. E. Graham and C. D. Geddes, J. Fluoresc., 2013, 24, 397–402, DOI: 10.1007/s10895-013-1304-9.

    Article  PubMed  CAS  Google Scholar 

  95. J. R. Lakowicz, Time-Domain Lifetime Measurements, Chapter 4.11.1. Multi-Exponential Decays, in Principles of Fluorescence Spectroscopy, Springer Science + Business Media, New York, 3rd edn, 2006, p. 143.

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported by the Slovak Research and Development Agency under contract No. APVV-14-0716 (10%). The authors also thank grant agency VEGA for the support of projects No. 1/0463/15 (50%) and No. 2/0161/17 (25%). For acquiring imaging data we acknowledge IMCF at BIOCEV, the institution supported by the MEYS CR (LM2015062 Czech-BioImaging) (15%).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Danko or M. Cigáň.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danko, M., Hrdlovič, P., Martinická, A. et al. Spectral properties of ionic benzotristhiazole based donor-acceptor NLO-phores in polymer matrices and their one- and two-photon cellular imaging ability. Photochem Photobiol Sci 16, 1832–1844 (2017). https://doi.org/10.1039/c7pp00239d

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c7pp00239d

Navigation