Skip to main content

Advertisement

Log in

Photocatalytic reduction of CO2 based on a CeO2 photocatalyst loaded with imidazole fabricated N-doped graphene and Cu(ii) as cocatalysts

  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Cocatalysts are vital for improving photocatalytic activity. Incorporating nitrogen atoms on a graphene frame using an imidazole cycle resulted in a new N-doped graphene (denoted as ING). Cerium(iv) oxide (CeO2) nanoparticles were dispersed on ING sheets, producing an ING/CeO2 hybrid material. The ING/CeO2 hybrid material was characterized using X-ray diffraction, transmission electron microscopy, Raman spectroscopy, ultraviolet–visible diffuse reflectance spectroscopy and surface photovoltage spectroscopy. Copper(ii) ions [Cu(ii)] were adsorbed on the ING/CeO2 hybrid material to directly form Cu(ii)/ING/CeO2, which could capture the photogenerated electrons to reduce carbon dioxide (CO2) to methanol (CH3OH) under incident light irradiation. The results showed that the yield from reducing CO2 to CH3OH during the photocatalytic process using Cu(ii)/ING/CeO2 as the photocatalyst approached 385.8 μmol g−1 cat. h−1, whereas the yield was only 3.57 μmol g−1 cat. h−1 using ING/CeO2 as the photocatalyst. This shows that the Cu(ii) ions play a vital role during photocatalytic reduction of CO2 by forming copper(i) ions [Cu(i)]. The percentage of ING in the ING/CeO2 hybrid material was investigated, and the results indicated that 3.6% of ING achieved an optimal yield of CH3OH during the photo-reduction process. The simultaneous roles of Cu(ii) ions and ING sheets demonstrate a synergistic strategy for improving the photocatalytic CO2 reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Linic, P. Christopher and D. B. Ingram, Nat. Mater., 2011, 10, 911–921.

    Article  CAS  PubMed  Google Scholar 

  2. S. Banerjee, S. C. Pillai, P. Falaras, K. E. O’shea, J. A. Byrne and D. D. Dionysiou, J. Phys. Chem. Lett., 2014, 5, 2543–2554.

    Article  CAS  PubMed  Google Scholar 

  3. M. Zang, L. Shi, L. Liang, D. Li and J. Sun, RSC Adv., 2015, 5, 56136–56144.

    Article  CAS  Google Scholar 

  4. S. Li, L. Hou, L. Zhang, L. Chen, Y. Lin and T. Xie, J. Mater. Chem. A, 2015, 3, 17820–17826.

    Article  CAS  Google Scholar 

  5. N. Sakai, R. Bhosale, D. Emery, J. Mareda and S. Matile, J. Am. Chem. Soc., 2010, 132, 6923–6925.

    Article  CAS  PubMed  Google Scholar 

  6. Z. He, Y. Shi, C. Gao, L. Wen, J. Chen and S. Song, J. Phys. Chem. C, 2013, 118, 389–398.

    Article  CAS  Google Scholar 

  7. S. Lee, S. Jeong, W. D. Kim, S. Lee, K. Lee, W. K. Bae, J. H. Moon, S. Lee and D. C. Lee, Nanoscale, 2016, 8, 10043–10048.

    Article  CAS  PubMed  Google Scholar 

  8. M. D. Ward and A. J. Bard, J. Phys. Chem., 1982, 86, 3599–3605.

    Article  CAS  Google Scholar 

  9. A. Yamakata, M. Kawaguchi, N. Nishimura, T. Minegishi, J. Kubota and K. Domen, J. Phys. Chem. C, 2014, 118, 23897–23906.

    Article  CAS  Google Scholar 

  10. S. Murcia-López, V. Vaiano, M. C. Hidalgo, J. A. Navío and D. Sannino, Photochem. Photobiol. Sci., 2015, 14, 678–685.

    Article  PubMed  CAS  Google Scholar 

  11. E. Kimura, X. Bu, M. Shionoya, S. Wada and S. Maruyama, Inorg. Chem., 1992, 31, 4542–4546.

    Article  CAS  Google Scholar 

  12. E. Kimura, S. Wada, M. Shionoya and Y. Okazaki, Inorg. Chem., 1994, 33, 770–778.

    Article  CAS  Google Scholar 

  13. N. Komatsuzaki, Y. Himeda, T. Hirose, H. Sugihara and K. Kasuga, Bull. Chem. Soc. Jpn., 1999, 72, 725–731.

    Article  CAS  Google Scholar 

  14. B. Gholamkhass, H. Mametsuka, K. Koike, T. Tanabe, M. Furue and O. Ishitani, Inorg. Chem., 2005, 44, 2326–2336.

    Article  CAS  PubMed  Google Scholar 

  15. S. Sato, K. Koike, H. Inoue and O. Ishitani, Photochem. Photobiol. Sci., 2007, 6, 454–461.

    Article  CAS  PubMed  Google Scholar 

  16. K. Koike, S. Naito, S. Sato, Y. Tamaki and O. Ishitani, J. Photochem. Photobiol., A, 2009, 207, 109–114.

    Article  CAS  Google Scholar 

  17. Z. Y. Bian, K. Sumi, M. Furue, S. Sato, K. Koike and O. Ishitani, Dalton Trans., 2009, 983–993.

    Google Scholar 

  18. Y. Tamaki, K. Watanabe, K. Koike, H. Inoue, T. Morimoto and O. Ishitani, Faraday Discuss., 2012, 155, 115–127.

    Article  CAS  PubMed  Google Scholar 

  19. Y. Tamaki, T. Morimoto, K. Koike and O. Ishitani, Proc. Natl. Acad. Sci. U. S. A., 2012, 109, 15673–15678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. S. Liu, Z. Zhao and Z. Wang, Photochem. Photobiol. Sci., 2007, 6, 695–700.

    Article  CAS  PubMed  Google Scholar 

  21. T. Nakajima, Y. Tamaki, K. Ueno, E. Kato, T. Nishikawa, K. Ohkubo, Y. Yamazaki, T. Morimoto and O. Ishitani, J. Am. Chem. Soc., 2016, 138, 13818–13821.

    Article  CAS  PubMed  Google Scholar 

  22. K. Sekizawa, K. Maeda, K. Domen, K. Koike and O. Ishitani, J. Am. Chem. Soc., 2013, 135, 4596–4599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. H. Takeda, K. Ohashi, A. Sekine and O. Ishitani, J. Am. Chem. Soc., 2016, 138, 4354–4357.

    Article  CAS  PubMed  Google Scholar 

  24. J. A. Maciá-Agulló, A. Corma and H. Garcia, Chem. - Eur. J., 2015, 21, 10940–10959.

    Article  PubMed  CAS  Google Scholar 

  25. S. Sato, T. Morikawa, S. Saeki, T. Kajino and T. Motohiro, Angew. Chem., Int. Ed., 2010, 122, 5227–5231.

    Article  Google Scholar 

  26. J. Lin, Y. Hou, Y. Zheng and X. Wang, Chem. - Asian J., 2014, 9, 2468–2474.

    Article  CAS  PubMed  Google Scholar 

  27. R. Kuriki and K. Maeda, Phys. Chem. Chem. Phys., 2017, 19, 4938–4950.

    Article  CAS  PubMed  Google Scholar 

  28. C. Gao, J. Wang, H. Xu and Y. Xiong, Chem. Soc. Rev., 2017, 46, 2799–2823.

    Article  CAS  PubMed  Google Scholar 

  29. S. Q. Liu, B. Xiao, L. R. Feng, S. S. Zhou, Z. G. Chen, C. B. Liu, F. Chen, Z. Y. Wu, N. Xu and W. C. Oh, Carbon, 2013, 64, 197–206.

    Article  CAS  Google Scholar 

  30. I. I. Soykal, H. Sohn and U. S. Ozkan, ACS Catal., 2012, 2, 2335–2348.

    Article  CAS  Google Scholar 

  31. D. Yang, L. Wang, Y. Sun and K. Zhou, J. Phys. Chem. C, 2010, 114, 8926–8932.

    Article  CAS  Google Scholar 

  32. A. D. Liyanage, S. D. Perera, K. Tan, Y. Chabal and K. J. Balkus Jr., itACS Catal.}, 2014, 4, 577–584.

    Article  CAS  Google Scholar 

  33. S. Q. Liu, S. S. Zhou, Z. G. Chen, C. B. Liu, F. Chen and Z. Y. Wu, Catal. Commun., 2016, 73, 7–11.

    Article  CAS  Google Scholar 

  34. Y. Zhou, B. Xiao, S. Q. Liu, Z. Meng, Z. G. Chen, C. Y. Zou, C. B. Liu, F. Chen and X. Zhou, Chem. Eng. J., 2016, 283, 266–275.

    Article  CAS  Google Scholar 

  35. J. McBride, K. Hass, B. Poindexter and W. Weber, J. Appl. Phys., 1994, 76, 2435–2441.

    Article  CAS  Google Scholar 

  36. G. Graham, W. Weber, C. Peters and R. Usmen, J. Catal., 1991, 130, 310–313.

    Article  CAS  Google Scholar 

  37. F. Scholes, A. Hughes, S. Hardin, P. Lynch and P. Miller, Chem. Mater., 2007, 19, 2321–2328.

    Article  CAS  Google Scholar 

  38. I. Kosacki, T. Suzuki, H. U. Anderson and P. Colomban, Solid State Ionics, 2002, 149, 99–105.

    Article  CAS  Google Scholar 

  39. W. Weber, K. Hass and J. McBride, Phys. Rev. B: Condens. Matter, 1993, 48, 178.

    Article  CAS  Google Scholar 

  40. M. S. P. Francisco, V. R. Mastelaro, P. A. Nascente and A. O. Florentino, J. Phys. Chem. B, 2001, 105, 10515–10522.

    Article  CAS  Google Scholar 

  41. Z. M. Yang, G. F. Huang, W. Q. Huang, J. M. Wei, X. G. Yan, Y. Y. Liu, C. Jiao, Z. Wan and A. Pan, J. Mater. Chem. A, 2014, 2, 1750–1756.

    Article  CAS  Google Scholar 

  42. D. Cavalcoli and A. Cavallini, Phys. Status Solidi C, 2010, 7, 1293–1300.

    Article  CAS  Google Scholar 

  43. J. Graciani, A. M. Márquez, J. J. Plata, Y. Ortega, N. C. Hernández, A. Meyer, C. M. Zicovich-Wilson and J. F. Sanz, J. Chem. Theory Comput., 2010, 7, 56–65.

    Article  PubMed  CAS  Google Scholar 

  44. C. H. Chen, J. Shieh, H. Y. Liao and J. J. Shyue, J. Eur. Ceram. Soc., 2014, 34, 1523–1535.

    Article  CAS  Google Scholar 

  45. A. Goeppert, M. Czaun, J. P. Jones, G. S. Prakash and G. A. Olah, Chem. Soc. Rev., 2014, 43, 7995–8048.

    Article  CAS  PubMed  Google Scholar 

  46. J. M. L. Martínez, E. Rodríguez-Castellón, R. M. T. Sánchez, L. R. Denaday, G. Y. Buldain and V. C. D. Orto, J. Mol. Catal. A: Chem., 2011, 339, 43–51.

    Article  CAS  Google Scholar 

  47. G. Avgouropoulos and T. Ioannides, Appl. Catal., A, 2003, 244, 155–167.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors greatly acknowledge the financial support from the National Natural Science Foundation of China (no. 21576175, 21347006), the Key Industrial Prospective Program of Jiangsu Science and Technology Department (BE2015190), the Natural Science Foundation of Jiangsu Province of China (no. BK20141178), the Opening Project of the Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education (no. LZJ1304), the Earmarked Nanotechnology Fund of the Bureau of Science and Technology of Suzhou City (no. ZXG201429), the Natural Science Foundation of the Jiangsu Higher School of China (no. 12KJA430005) and Collaborative Innovation Center of Technology and Material of Water Treatment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shou-Qing Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, SS., Liu, SQ. Photocatalytic reduction of CO2 based on a CeO2 photocatalyst loaded with imidazole fabricated N-doped graphene and Cu(ii) as cocatalysts. Photochem Photobiol Sci 16, 1563–1569 (2017). https://doi.org/10.1039/c7pp00211d

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c7pp00211d

Navigation