Skip to main content
Log in

Cationic amphiphilic Zn-porphyrin with high antifungal photodynamic potency

  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Photodynamic therapy (PDT) is a promising alternative approach particularly attractive for treatment of localized fungal infections. It is based on compounds, photosensitizers (PSs), which when excited with visible light, generate reactive species that ultimately cause cell death. Such species have short lifespans; as a consequence, efficiency and selectivity of the PDT treatment depend mainly on the properties of the PSs. This study is the first to explore the effect of cationic porphyrin-based photosensitizers on Saccharomyces cerevisiae, a member of the fungus kingdom. The study investigates which properties of the PS are essential for efficient antifungal PDT. Cationic Zn(ii) meso-tetrakis(N-alkylpyridinium-2-yl)porphyrins (ZnP) with identical tetrapyrrole core and photo-physical properties, but with different substituents at the meso positions of the porphyrin ring were studied. Attaching six-carbon aliphatic chains to the four pyridyl nitrogens at all meso positions to the porphyrin ring produced a highly photo-efficient amphiphilic, water soluble PS, with minimal dark toxicity. It was taken up by the yeast cells and upon illumination suppressed metabolism by inactivating cytoplasmic and mitochondrial enzymes, and compromising plasma membrane barrier function. At low concentrations (up to 5 μM) the tetrahexyl derivative was a much more powerful antifungal agent than the commercially available chlorin e6. The more lipophilic tetraoctyl analog was also highly photo-efficient but displayed strong dark toxicity, presumably due to higher lipophilicity which might affect the lipid bilayer of membranes. Results presented here can assist the design of antifungal agents whose biological action depends on efficient and rapid uptake by the cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. E. Rodrigues, S. Silva, J. Azeredo, and M. Henriques, Novel strategies to fight Candida species infection, Crit. Rev. Microbiol., 2016, 42, 594–606.

    Article  CAS  Google Scholar 

  2. M. R. Hamblin, Antimicrobial photodynamic inactivation: a bright new technique to kill resistant microbes, Curr. Opin. Microbiol., 2016, 33, 67–73.

    Article  CAS  Google Scholar 

  3. M. Wainwright, and K. B. Crossley, Photosensitising agents - Circumventing resistance and breaking down biofilms: A review, Int. Biodeterior. Biodegrad., 2004, 53, 119–126.

    Article  CAS  Google Scholar 

  4. L. Benov, Photodynamic therapy: Current status and future directions, Med. Princ. Pract., 2015, 24, 14–28.

    Article  Google Scholar 

  5. M. R. Hamblin, Antimicrobial Photodynamic Therapy and Photodynamic Inactivation, or Killing Bugs with Dyes and Light-A Symposium-in-Print, Photochem. Photobiol., 2012, 88, 496–498.

    Article  CAS  Google Scholar 

  6. M. R. Hamblin, and T. Hasan, Photodynamic therapy: A new antimicrobial approach to infectious disease?, Photochem. Photobiol. Sci., 2004, 3, 436–450.

    Article  CAS  Google Scholar 

  7. M. Wainwright, In defence of ‘dye therapy’, Int. J. Antimicrob. Agents., 2014, 44, 26–29.

    Article  CAS  Google Scholar 

  8. M. Wainwright, ‘Safe’ photoantimicrobials for skin and soft-tissue infections, Int. J. Antimicrob. Agents., 2010, 36, 14–18.

    Article  CAS  Google Scholar 

  9. T. Dai, B. B. Fuchs, J. J. Coleman, R. A. Prates, C. Astrakas, T. G. St Denis, M. S. Ribeiro, E. Mylonakis, M. R. Hamblin, and G. P. Tegos, Concepts and principles of photodynamic therapy as an alternative antifungal discovery platform, Front. Microbiol., 2012, 3, 120.

    Article  CAS  Google Scholar 

  10. R. F. Donnelly, P. A. McCarron, and M. M. Tunney, Antifungal photodynamic therapy, Microbiol. Res., 2008, 163, 1–12.

    Article  CAS  Google Scholar 

  11. E. B. Gralla, and J. S. Valentine, Null mutants of Saccharomyces cerevisiae Cu,Zn superoxide dismutase: characterization and spontaneous mutation rates, J. Bacteriol., 1991, 173, 5918–5920.

    Article  CAS  Google Scholar 

  12. A. Tovmasyan, J. S. Reboucas, and L. Benov, Simple biological systems for assessing the activity of superoxide dismutase mimics, Antioxid. Redox Signaling., 2014, 20, 2416–2436.

    Article  CAS  Google Scholar 

  13. M. M. Awad, A. Tovmasyan, J. D. Craik, I. Batinic-Haberle, and L. T. Benov, Important cellular targets for antimicrobial photodynamic therapy, Appl. Microbiol. Biotechnol., 2016, 100, 7679–7688.

    Article  CAS  Google Scholar 

  14. K. Alenezi, A. Tovmasyan, I. Batinic-Haberle, and L. T. Benov, Optimizing Zn porphyrin-based photosensitizers for efficient antibacterial photodynamic therapy, Photodiagn. Photodyn. Ther., 2017, 17, 154–159.

    Article  CAS  Google Scholar 

  15. R. Ezzeddine, A. Al-Banaw, A. Tovmasyan, J. D. Craik, I. Batinic-Haberle, and L. T. Benov, Effect of molecular characteristics on cellular uptake, subcellular localization, and phototoxicity of Zn(II) N-alkylpyridylporphyrins, J. Biol. Chem., 2013, 288, 36579–36588.

    Article  CAS  Google Scholar 

  16. A. M. Odeh, J. D. Craik, R. Ezzeddine, A. Tovmasyan, I. Batinic-Haberle, and L. T. Benov, Targeting mitochondria by Zn(II)NAlkylpyridylporphyrins: The impact of compound sub-mitochondrial partition on cell respiration and overall photodynamic efficacy, PLoS One., 2014, 9, e108238.

    Article  Google Scholar 

  17. M. Thomas, J. D. Craik, A. Tovmasyan, I. Batinic-Haberle, and L. T. Benov, Amphiphilic cationic Zn-porphyrins with high photodynamic antimicrobial activity, Future Microbiol., 2015, 10, 709–724.

    Article  CAS  Google Scholar 

  18. T. Mosmann, Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays, J. Immunol. Methods., 1983, 65, 55–63.

    Article  CAS  Google Scholar 

  19. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, Protein measurement with the Folin phenol reagent, J. Biol. Chem., 1951, 193, 265–275.

    Article  CAS  Google Scholar 

  20. I. Batinic-Haberle, and L. T. Benov, An SOD mimic protects NADP+-dependent isocitrate dehydrogenase against oxidative inactivation, Free Radical Res., 2008, 42, 618–624.

    Article  CAS  Google Scholar 

  21. D. Deere, J. Shen, G. Vesey, P. Bell, P. Bissinger, and D. Veal, Flow cytometry and cell sorting for yeast viability assessment and cell selection, Yeast., 1998, 14, 147–160.

    Article  CAS  Google Scholar 

  22. R. Yin, and M. R. Hamblin, Antimicrobial photosensitizers: Drug discovery under the spotlight, Curr. Med. Chem., 2015, 22, 2159–2185.

    Article  CAS  Google Scholar 

  23. T. N. Demidova, and M. R. Hamblin, Effect of cell-photo sensitizer binding and cell density on microbial photoinactivation, Antimicrob. Agents Chemother., 2005, 49, 2329–2335.

    Article  CAS  Google Scholar 

  24. G. Jori, C. Fabris, M. Soncin, S. Ferro, O. Coppellotti, D. Dei, L. Fantetti, G. Chiti, and G. Roncucci, Photodynamic therapy in the treatment of microbial infections: Basic principles and perspective applications, Lasers Surg. Med., 2006, 38, 468–481.

    Article  Google Scholar 

  25. A. M. Li, J. Martins, A. Tovmasyan, J. S. Valentine, I. Batinic-Haberle, I. Spasojevic, and E. B. Gralla, Differential localization and potency of manganese porphyrin superoxide dismutase-mimicking compounds in Saccharomyces cerevisiae, Redox Biol., 2014, 3, 1–6.

    Article  Google Scholar 

  26. S. Oriel, and Y. Nitzan, Mechanistic aspects of photoinactivation of Candida albicans by exogenous porphyrins, Photochem. Photobiol., 2012, 88, 604–612.

    Article  CAS  Google Scholar 

  27. M. P. Cormick, M. G. Alvarez, M. Rovera, and E. N. Durantini, Photodynamic inactivation of Candida albicans sensitized by tri- and tetra-cationic porphyrin derivatives, Eur. J. Med. Chem., 2009, 44, 1592–1599.

    Article  CAS  Google Scholar 

  28. V. Contreras-Shannon, and L. McAlister-Henn, Influence of compartmental localization on the function of yeast NADP+-specific isocitrate dehydrogenases, Arch. Biochem. Biophys., 2004, 423, 235–246.

    Article  CAS  Google Scholar 

  29. D. A. Al-Mutairi, J. D. Craik, I. Batinic-Haberle, and L. T. Benov, Photosensitizing action of isomeric zinc N-methylpyridyl porphyrins in human carcinoma cells, Free Radical Res., 2006, 40, 477–483.

    Article  CAS  Google Scholar 

  30. I. Batinić-Haberle, I. Spasojević, R. D. Stevens, P. Hambright, P. Neta, A. Okado-Matsumoto, and I. Fridovich, New class of potent catalysts of O2.- Dismutation. Mn(III) ortho-methoxyethylpyridyl- and di-ortho-methoxyethyl- imidazolylporphyrins, Dalton Trans., 2004, 1696–1702.

    Google Scholar 

  31. I. Batinić-Haberle, I. Spasojevic, R. D. Stevens, P. Hambright, and I. Fridovich, Manganese(III) meso-tetrakis(ortho-Nalkylpyridyl) porphyrins. Synthesis, characterization, and catalysis of O2.- dismutation, J. Chem. Soc., Dalton Trans., 2002, 2689–2696.

    Google Scholar 

  32. T. N. Demidova, and M. R. Hamblin, Photodynamic therapy targeted to pathogens, Int. J. Immunopathol. Pharmacol., 2004, 17, 245–254.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants YM03/13 and SRUL02/13 from Kuwait University. The authors are grateful to Milini Thomas for excellent technical assistance and to Dr Edith Gralla, University of California at Los Angeles for the yeast strain used in this study. IBH and AT are thankful for IBH general research funds. IBH is thankful to the Department of Radiation Oncology for the support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludmil Benov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moghnie, S., Tovmasyan, A., Craik, J. et al. Cationic amphiphilic Zn-porphyrin with high antifungal photodynamic potency. Photochem Photobiol Sci 16, 1709–1716 (2017). https://doi.org/10.1039/c7pp00143f

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c7pp00143f

Navigation