Skip to main content
Log in

A light harvesting perylene derivative–zinc phthalocyanine complex in water: spectroscopic and thermodynamic studies

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

A perylene derivative, namely N, N ′-bis(2(trimethylammonium iodide)ethylene)perylene-3, 4, 9, 10-tetracarboxyldiimide (TAIPDI) forms nanoscale columnar stacks in water that have been characterized by using optical absorption and emission measurements, dynamic light scattering (DLS), and transmission electron microscopy (TEM). This behaviour was compared with that of unstacked TAIPDI in methanol. Assembly formation between the one-dimensional TAIPDI stacks and zinc phthalocyanine tetrasulphonic groups (ZnPcS4) via strong π–π and ionic interactions has been described in an aqueous medium. The formation constant of the supramolecular dyad has been determined as 2.94 × 104 M−1 from both the absorption and fluorescence measurements. Upon addition of ZnPcS4, the fluorescence quenching of the singlet-excited state of TAIPDI was observed because of the electron transfer process from ZnPcS4 to TAIPDI via the singlet-excited states of ZnPcS4 and TAIPDI entities. The electrochemical studies supported the electron transfer pathways via the singlet states of ZnPcS4 and TAIPDI. The thermodynamic parameters of the supramolecular complex have been determined from stopped-flow measurements. The interaction between ZnPcS4 and TAIPDI occurs in two steps, where the rate constant of the second step with TAIPDI (207 ± 8 M−1 s−1) is much slower than the first one (3515 ± 101 M−1 s−1). Activation parameters for the complex formation (Δ H# = 76 ± 11 kJ mol−1 and Δ S# = 83 ± 37 J K−1 mol−1, and Δ H# = 221 ± 15 kJ mol−1 and Δ S# = 540 ± 50 J K−1 mol−1) were determined from variable temperature studies for the first and second steps, respectively. The significantly positive Δ S# values found for both steps of the interaction reactions are consistent with a dissociative mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Balzani, A. Credi and M. Venturi, Photochemical conversion of solar energy, ChemSusChem, 2008, 1, 26–58.

    Article  CAS  PubMed  Google Scholar 

  2. D. Gust, T. A. Moore and A. L. Moore, Solar fuels via artificial photosynthesis, Acc. Chem. Res., 2009, 42, 1890–1898.

    Article  CAS  PubMed  Google Scholar 

  3. J. M. Lehn, Supramolecular Chemistry, Science, 1993, 260, 1762–1763.

    Article  CAS  PubMed  Google Scholar 

  4. F. D’Souza, S. Gadde, M. E. Zandler, K. Arkady, M. E. El-Khouly and M. Fujitsuka, Studies on covalently linked porphyrin-C60 dyads: Stabilization of charge-separated states by axial coordination, J. Phys. Chem. A, 2002, 106, 12393–12404.

    Article  CAS  Google Scholar 

  5. A. S. Klymchenko, S. Furukawa, K. Müllen, M. Van der Auweraer, S. De Feyter, Supramolecular hydrophobic–hydrophilic nanopatterns at electrified interfaces, Nano Lett., 2007, 7, 791–795.

    Article  CAS  PubMed  Google Scholar 

  6. Y. Rio, W. Seitz, A. Gouloumis, P. Vázquez, J. L. Sessler, D. M. Guldi and T. Torres, A panchromatic supramolecular fullerene-based donor–acceptor assembly derived from a peripherally substituted bodipy–zinc phthalocyanine dyad, Chem.–Eur. J., 2010, 16, 1929–1940.

    Article  CAS  PubMed  Google Scholar 

  7. M. M. Safont-Sempere, G. Fernāndez, F. Würthner, Self-sorting phenomena in complex supramolecular systems, Chem. Rev., 2011, 111, 5784–5814.

    Article  CAS  PubMed  Google Scholar 

  8. D. M. Lyons, J. Mohanraj, G. Accorsi, N. Armaroli, P. D. W. Boyd, A supramolecular porphyrin-ferrocene-fullerene triad, New J. Chem., 2011, 35, 632–639.

    Article  CAS  Google Scholar 

  9. A. M. V. M. Pereira, A. Hausmann, J. P. C. Tomē, O. Trukhina, M. Urbani, M. G. P. M. S. Neves, J. A. S. Cavaleiro, D. M. Guldi and T. Torres, Porphyrin-phthalocyanine/pyridylfullerene supramolecular assemblies, Chem.–Eur. J., 2012, 18, 3210–3219.

    Article  CAS  PubMed  Google Scholar 

  10. M. E. El-Khouly, S. Fukuzumi, F. D’Souza, Photosynthetic antenna-reaction center mimicry by using boron dipyrromethene sensitizers, ChemPhysChem, 2014, 15, 30–47.

    Article  CAS  PubMed  Google Scholar 

  11. F. D’Souza and O. Ito, Photosensitized electron transfer processes of nanocarbons applicable to solar cells, Chem. Soc. Rev., 2012, 86–96.

    Google Scholar 

  12. M. E. El-Khouly, O. Ito, P. M. Smith, F. D’Souza, Intermolecular and supramolecular photoinduced electron transfer processes of fullerene–porphyrin/phthalocyanine systems, J. Photochem. Photobiol., C, 2004, 5, 79–104.

    Article  CAS  Google Scholar 

  13. F. D’Souza and O. Ito, Supramolecular donor–acceptor hybrids of porphyrins/phthalocyanines with fullerenes/carbon nanotubes: electron transfer, sensing, switching, and catalytic applications, Chem. Commun., 2012, 41, 4913–4928.

    Google Scholar 

  14. Y. Chen, Y. Lin, M. E. El-Khouly, X. Zhuang, Y. Araki, O. Ito and W. Zhang, Supramolecular zinc phthalocyanine–perylene bisimide triad: synthesis and photophysical properties, J. Phys. Chem. C, 2007, 111, 16096–16099.

    Article  CAS  Google Scholar 

  15. M. E. El-Khouly, A. N. Gtierrez, Á. Sastre-Santos, F. Fernández-Lázaro and S. Fukuzumi, Light harvesting zinc naphthalocyanine–perylenediimide supramolecular dyads: long-lived charge-separated states in nonpolar media, Phys. Chem. Chem. Phys., 2012, 14, 3612–3621.

    Article  CAS  PubMed  Google Scholar 

  16. M. Supur, M. E. El-Khouly, J. H. Seok, J. H. Kim, K. Y. Kay and S. Fukuzumi, Efficient electron transfer processes of the covalently linked perylenediimide-ferrocene systems: femtosecond and nanosecond transient absorption studies, J. Phys. Chem. C, 2010, 114, 10969–10977.

    Article  CAS  Google Scholar 

  17. M. E. El-Khouly, D. H. Choi and S. Fukuzumi, Photoinduced energy-transfer and electron-transfer processes in molecules of tetrakis(( E, )-2-(50-hexyl-2, 20-bithiophen-5-yl)vinyl)benzene and perylenediimide, J. Photochem. Photobiol., A, 2011, 218, 17–25.

    Article  CAS  Google Scholar 

  18. C.-C. You, F. Würthner, Self-assembly of ferrocene-functionalized perylene bisimide bridging ligands with Pt(II) corner to electrochemically active molecular squares, J. Am. Chem. Soc., 2003, 125, 9716–9725.

    Article  CAS  PubMed  Google Scholar 

  19. M. J. Ahrens, M. J. Fuller and M. R. Wasielewski, Cyanated perylene-3, 4-dicarboximides and perylene-3, 4:9, 10-bis(dicarboximide): Facile chromophoric oxidants for organic photonics and electronics, Chem. Mater., 2003, 15, 2684–2686.

    Article  CAS  Google Scholar 

  20. C.-C. You, F. Würthner, Porphyrin–perylene bisimide dyads and triads: Synthesis and optical and coordination properties, Org. Lett., 2004, 6, 2401–2404.

    Article  CAS  PubMed  Google Scholar 

  21. F. Würthner, Perylene bisimide dyes as versatile building blocks for functional supramolecular architectures, Chem. Commun., 2004, 1564–1579.

    Google Scholar 

  22. H. Langhals, Control of the interactions in multichromophores: novel concepts. Perylene bis-imides as components for larger functional units, Helv. Chim. Acta, 2005, 88, 1309–1343.

    Article  CAS  Google Scholar 

  23. Y. Ie, T. Uto, N. Yamamoto and Y. Aso, Dendritic oligothiophene bearing perylene bis(dicarboximide) groups as an active material for photovoltaic device, Chem. Commun., 2009, 1213–1215.

    Google Scholar 

  24. U. Hahn, J.-F. Nierengarten, B. Delavaux-Nicot, F. Monti, C. Chiorboli and N. Armaroli, Fullerodendrimers with a perylenediimide core, New J. Chem., 2011, 35, 2234–2244.

    Article  CAS  Google Scholar 

  25. Y. Huang, B. Quan, Z. Wei, G. Liu and L. Sun, Self-assembled organic functional nanotubes and nanorods and their sensory properties, J. Phys. Chem. C, 2009, 113, 3929–3933.

    Article  CAS  Google Scholar 

  26. M. Supur and S. Fukuzumi, Photodriven electron transport within the columnar perylenediimide nanostructures self-assembled with sulfonated porphyrins in water, J. Phys. Chem. C, 2012, 116, 23274–23282.

    Article  CAS  Google Scholar 

  27. X. Li, L. E. Sinks, B. Rybtchinski and M. R. Wasielewski, Ultrafast aggregate-to-aggregate energy transfer within self-assembled light-harvesting columns of zinc phthalocyanine tetrakis(perylenediimide), J. Am. Chem. Soc., 2004, 126, 10810–10811.

    Article  CAS  PubMed  Google Scholar 

  28. S. Fukuzumi, K. Ohkubo, J. Ortiz, A. M. Gutierrez, F. Fernández-Lázaro, Á. Sastre-Santos, Formation of a long-lived charge-separated state of a zinc phthalocyanine-perylenediimide dyad by complexation with magnesium ion, Chem. Commun., 2005, 3814–3816.

    Google Scholar 

  29. M. S. Rodríguez-Morgade, T. Torres, C. Atienza Castellanos and D. M. Guldi, Supramolecular bis(rutheniumphthalocyanine)–perylenediimide ensembles: Simple complexation as a powerful tool toward long-lived radical ion pair states, J. Am. Chem. Soc., 2006, 128, 15145–15154.

    Article  PubMed  CAS  Google Scholar 

  30. A. J. Jiménez, F. Spänig, M. S. Rodríguez-Morgade, K. Ohkubo, S. Fukuzumi, D. M. Guldi and T. Torres, A tightly coupled bis(zinc(ii) phthalocyanine)–perylenediimide ensemble to yield long-lived radical ion pair states, Org. Lett., 2007, 9, 2481–2484.

    Article  PubMed  CAS  Google Scholar 

  31. U. Hahn, S. Engmann, C. Oelsner, C. Ehli, D. M. Guldi and T. Torres, Immobilizing water-soluble dendritic electron donors and electron acceptors-phthalocyanines and perylenediimides-onto single wall carbon nanotubes, J. Am. Chem. Soc., 2010, 132, 6392–6401.

    Article  CAS  PubMed  Google Scholar 

  32. F. J. Céspedes-Guirao, K. Ohkubo, S. Fukuzumi, Á. Sastre-Santos, F. Fernández-Lázaro, Synthesis and photoinduced electron transfer of phthalocyanine–perylenebisimide pentameric arrays, J. Org. Chem., 2009, 74, 5871–5880.

    Article  PubMed  CAS  Google Scholar 

  33. W. Seitz, A. J. Jiménez, E. Carbonell, B. Grimm, M. S. Rodríguez-Morgade, D. M. Guldi and T. Torres, Synthesis and photophysical properties of a hydrogen-bonded phthalocyanine–perylenediimide assembly, Chem. Commun., 2010, 46, 127–129.

    Article  CAS  Google Scholar 

  34. A. J. Jiménez, B. Grimm, V. L. Gunderson, M. T. Vagnini, S. K. Calderon, M. S. Rodríguez-Morgade, M. R. Wasielewski, D. M. Guldi and T. Torres, Synthesis, characterization, and photoinduced energy and electron transfer in a supramolecular tetrakis (ruthenium(ii) phthalocyanine) perylenediimide pentad, Chem.–Eur. J., 2011, 17, 5024–5032.

    Article  PubMed  CAS  Google Scholar 

  35. F. J. Céspedes-Guirao, K. Ohkubo, S. Fukuzumi, F. Fernández-Lázaro, Á. Sastre-Santos, Supramolecular zinc phthalocyanine–imidazolyl perylenediimide dyad and triad: synthesis, complexation, and photophysical studies, Chem.–Asian J., 2011, 6, 3110–3121.

    Article  PubMed  CAS  Google Scholar 

  36. F. J. Céspedes-Guirao, L. Martin-Gomis, K. Ohkubo, S. Fukuzumi, F. Fernández-Lázaro, Á. Sastre-Santos, Synthesis and photophysics of silicon phthalocyanine–perylenebisimide triads connected through rigid and flexible bridges, Chem.–Eur. J., 2011, 17, 9153–9163.

    Article  PubMed  CAS  Google Scholar 

  37. V. M. Blas-Ferrando, J. Ortiz, L. Bouissane, K. Ohkubo, S. Fukuzumi, F. Fernández-Lázaro, Á. Sastre-Santos, Rational design of a phthalocyanine–perylenediimide dyad with a long-lived charge-separated state, Chem. Commun., 2012, 48, 6241–6243.

    Article  CAS  Google Scholar 

  38. M. E. El-Khouly, A. M. Gutierrez, Á. Sastre-Santos, F. Fernández-Lázaro and S. Fukuzumi, Light harvesting zinc naphthalocyanine–perylenediimide supramolecular dyads: long-lived charge-separated states in nonpolar media, Phys. Chem. Chem. Phys., 2012, 14, 3612–3621.

    Article  CAS  PubMed  Google Scholar 

  39. A. J. Jimenez, M. Sekita, E. Caballero, M. L. Marcos, M. S. Rodríguez-Morgade, D. M. Guldi and T. Torres, Assembling a phthalocyanine and perylenediimide donor–acceptor hybrid through a platinum(ii) diacetylide linker, Chem.–Eur. J., 2013, 19, 14506–14514.

    Article  CAS  PubMed  Google Scholar 

  40. A. J. Jimenez, R. M. C. Calderon, M. S. Rodriguez-Morgade, D. M. Guldi and T. Torres, Synthesis, characterization and photophysical properties of a melamine-mediated hydrogen-bound phthalocyanine–perylenediimide assembly, Chem. Sci., 2013, 4, 1064–1074.

    Article  CAS  Google Scholar 

  41. M. Sekita, A. J. Jimenez, M. L. Marcos, E. Caballero, M. S. Rodríguez-Morgade, D. M. Guldi and T. Torres, Tuning the electron acceptor in phthalocyanine-based electron donor–acceptor conjugates, Chem.–Eur. J., 2015, 21, 19028–19040.

    Article  CAS  PubMed  Google Scholar 

  42. J. Fernández-Ariza, R. M. KrickCalderón, M. Salomé Rodríguez-Morgade, D. M. Guldi and T. Torres, Phthalocyanine–perylenediimide cart wheels, J. Am. Chem. Soc., 2016, 138, 12963–12974.

    Article  PubMed  CAS  Google Scholar 

  43. B. Wang and C. Yu, Fluorescence turn-on detection of a protein through the reduced aggregation of a perylene probe, Angew. Chem., Int. Ed., 2010, 49, 1485–1488.

    Article  CAS  Google Scholar 

  44. F. Biedermann, E. Elmalem, I. Ghosh, W. M. Nau and O. A. Scherman, Strongly fluorescent, switchable perylene bis(diimide) host-guest complexes with cucurbit[8]uril in water, Angew. Chem., Int. Ed., 2012, 51, 7739–7743.

    Article  CAS  Google Scholar 

  45. S. Gaspard and P. Maillard, Structure des phtalocyanines tetra tertio-butylees: mecanisme de la synthese, Tetrahedron, 1987, 43, 1083–1090.

    Article  CAS  Google Scholar 

  46. J. Mizuguchi and K. Tojo, Electronic structure of perylene pigments as viewed from the crystal structure and excitonic interactions, J. Phys. Chem. B, 2002, 106, 767–772.

    Article  CAS  Google Scholar 

  47. J. M. Giaimo, J. V. Lockard, L. E. Sinks, A. M. Scott, T. M. Wilson and M. R. Wasielewski, Excited singlet states of covalently bound, cofacial dimers and trimers of perylene-3, 4:9, 10-bis(dicarboximide)s, J. Phys. Chem. A, 2008, 112, 2322–2330.

    Article  CAS  PubMed  Google Scholar 

  48. K. Balanrishnan, A. Datar, T. Naddo, J. Huang, R. Oitker, M. Yen, J. Zhao and L. Zang, Effect of side-chain substituents on self-assembly of perylene diimide molecules: morphology control, J. Am. Chem. Soc., 2006, 128, 7390–7398.

    Article  CAS  Google Scholar 

  49. G. Scatchard, The attractions of proteins for small molecules and ions, Ann. N. Y. Acad. Sci., 1949, 51, 660–672.

    Article  CAS  Google Scholar 

  50. M. E. El-Khouly, L. M. Rogers, M. E. Zandler, G. Suresh, O. Ito, F. D’Souza, Studies on intra-supramolecular and intermolecular electron-transfer processes between zinc naphthalocyanine and imidazole-appended fullerene, ChemPhysChem, 2003, 4, 474–481.

    Article  CAS  PubMed  Google Scholar 

  51. Free energy changes for electron transfer Δ GCS = EoxEredEs; where Eox, Ered, and Es are the first oxidation potential of ZnPcS4, first reduction potential of TAIPDI, and energy of the singlet states of the excited species, respectively.

  52. The Biological Chemistry of the Elements–The Inorganic Chemistry of Life, ed. J. J. da Silva and R. J. P. Williams, Clarendon, Oxford, England, 1991

    Google Scholar 

  53. Perspectives in Coordination Chemistry, ed. H. Sigel, Verlag Helvetica Chimica Acta Basel, 1992

    Google Scholar 

  54. R. T. Jonas, T. D. P. Stack, Synthesis and characterization of a family of systematically varied tris(2-Pyridyl)methoxymethane ligands: Copper(i) and Copper(ii) complexes, Inorg. Chem., 1998, 37, 6615–6629.

    Article  CAS  PubMed  Google Scholar 

  55. N. Wei, N. N. Murthy, Q. Chen, J. Zubieta and K. D. Karlin, Copper(i)/dioxygen reactivity of mononuclear complexes with pyridyl and quinolyl tripodal tetradentate ligands: reversible formation of Cu:O2 = 1:1 and 2:1 adducts, Inorg. Chem., 1994, 33, 1953–1965.

    Article  CAS  Google Scholar 

  56. K. D. Karlin, R. W. Cruse, Y. Gultneh, A. Farooq, J. C. Hayes and J. Zubieta, Dioxygen-copper reactivity. Reversible binding of O2 and CO to a phenoxo-bridged dicopper(i) complex, J. Am. Chem. Soc., 1987, 109, 2668–2679.

    Article  CAS  Google Scholar 

  57. N. Kitajima, T. Koda, S. Hashimoto, T. Kitagawa and Y. Morooka, Synthesis and characterization of the dinuclear copper(ii) complexes [Cu(HB(3, 5-Me2pz)3)]2X (X = O2-, (OH)22-, CO22-, O22-), J. Am. Chem. Soc., 1991, 13, 5664–5671.

    Article  Google Scholar 

  58. F. Thaler, C. D. Hubbard, F. W. Heinemann, R. van Eldik, S. Schindler, I. Fabian, A. M. Dittler-Klingemann, F. E. Hahn and C. Orvig, Structural, spectroscopic, thermodynamic and kinetic properties of copper(ii) complexes with tripodal tetraamines, Inorg. Chem., 1998, 37, 4022–4029.

    Article  CAS  PubMed  Google Scholar 

  59. M. Becker, S. Schindler, R. van Eldik, Dioxygen binding to a macrocyclic dinuclear copper(i) monooxygenase model system. Ambient and high pressure kinetics, Inorg. Chem., 1994, 33, 5370–5371.

    Article  CAS  Google Scholar 

  60. D. Hugh Powell, A. E. Merbach, I. Fabian, S. Schindler, R. van Eldik, Evidence for a chelate-induced changeover in the substitution mechanism of aquated copper(ii). Volume profile analyses of water exchange and complex-formation reactions, Inorg. Chem., 1994, 33, 4468–4473.

    Article  Google Scholar 

  61. A. Company, J.-E. Jee, X. Ribas, J. M. Lopez-Valbuena, L. Gmez, M. Corbella, A. Llobet, J. Maha, J. Benet-Buchholz, M. Costas, R. van Eldik, Structural and kinetic study of reversible CO2 fixation by dicopper macrocyclic complexes. From intramolecular binding to self-assembly of molecular boxes, Inorg. Chem., 2007, 46, 9098–9110.

    Article  CAS  PubMed  Google Scholar 

  62. M. M. Ibrahim and S. Y. Shaban, Synthesis, characterization, and crystal structures of hydrotris(2-mercapto-1-imidazolyl)borate-based zinc(ii) and copper(i) complexes, Inorg. Chim. Acta, 2009, 362, 1471–1477.

    Article  CAS  Google Scholar 

  63. D. B. Rorabacher, Electron transfer by copper centers, Chem. Rev., 2004, 104, 651–698.

    Article  CAS  PubMed  Google Scholar 

  64. D. E. Fenton, Metallobiosites and their synthetic analogues—a belief in synergism 1997–1998 Tilden Lecture, Chem. Soc. Rev., 1999, 28, 159–168.

    Article  CAS  Google Scholar 

  65. N. Kitajima, Synthetic approach to the structure and function of copper proteins, Adv. Inorg. Chem., 1992, 39, 1–77.

    Article  CAS  Google Scholar 

  66. E. T. Adman, Copper protein structures, Adv. Protein Chem., 1991, 42, 145–197.

    Article  CAS  PubMed  Google Scholar 

  67. R. van Eldik, Mechanistic studies in coordination chemistry, Coord. Chem. Rev., 1999, 182, 373–410.

    Article  Google Scholar 

  68. Metal Ions in Solution, ed. J. Burgess, Ellis Horwood, Chichester, 1978

    Google Scholar 

  69. Ligand substitution processes, ed. C. H. Langford and H. B. Gray, W. A. Benjamin Inc., New York, Amsterdam, 1965, p.8

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Electronic supplementary information (ESI) available: Cyclic voltammograms of ZnPcS4 and TAIPDI in water. See DOI: 10.1039/c7pp00055c

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Refaey, A., Shaban, S.Y., El-Kemary, M. et al. A light harvesting perylene derivative–zinc phthalocyanine complex in water: spectroscopic and thermodynamic studies. Photochem Photobiol Sci 16, 861–869 (2017). https://doi.org/10.1039/c7pp00055c

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c7pp00055c

Navigation