Skip to main content
Log in

Effect of nucleants in photothermally assisted crystallization

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Laser-induced crystallization is emerging as a promising technique to crystallize biomolecules like amino acids and proteins. The use of external materials as nucleants and novel seeding methods open new paths for protein crystallization. We report here the results of experiments that explore the effect of nucleants on laser-based crystallization of microlitre droplets of small molecules, amino acids, and proteins. The role of parameters like solute concentration, droplet volume, type and size of the nucleant, and laser power, are systematically investigated. In addition to crystallization of standard molecules like NaCl, KCl, and glycine, we demonstrate the crystallization of negatively (l-histidine), and positively (l-aspartic acid) charged amino acids and lysozyme protein. Single crystal X-ray diffraction and Raman spectroscopy studies unequivocally indicate that the nucleants do not alter the molecular structure of glycine, hydrogen bonding patterns, and packing. Localized vaporization of the solvent near the nucleant due to photothermal heating has enabled us to achieve rapid crystallization–within 3 s–at laser intensities of 0.1 MW cm−2, significantly lower than those reported earlier, with both saturated and unsaturated solutions. The outcome of the current experiments may be of utility in tackling various crystallization problems during the formation of crystals large enough to perform X-ray crystallography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. McPherson, in EJB reviews 1990, Springer, 1990, pp.49–71

    Book  Google Scholar 

  2. G. Christopher, A. Phipps and R. Gray, Temperature-dependent solubility of selected proteins, J. Cryst. Growth, 1998, 191, 820–826.

    Article  CAS  Google Scholar 

  3. R. Crespo, P. M. Martins, L. Gales, F. Rocha and A. M. Damas, Potential use of ultrasound to promote protein crystallization, J. Appl. Crystallogr., 2010, 43, 1419–1425.

    Article  CAS  Google Scholar 

  4. J. E. Aber, S. Arnold, B. A. Garetz and A. S. Myerson, Strong dc electric field applied to supersaturated aqueous glycine solution induces nucleation of the γ polymorph, Phys. Rev. Lett., 2005, 94, 145503.

    Article  PubMed  CAS  Google Scholar 

  5. J. P. Astier, S. Veesler and R. Boistelle, Protein crystals orientation in a magnetic field, Acta Crystallogr., Sect. D: Biol. Crystallogr., 1998, 54, 703–706.

    Article  CAS  Google Scholar 

  6. Z. Hammadi and S. Veesler, New approaches on crystallization under electric fields, Prog. Biophys. Mol. Biol., 2009, 101, 38–44.

    Article  CAS  PubMed  Google Scholar 

  7. S. K. Brayshaw, J. W. Knight, P. R. Raithby, T. L. Savarese, S. Schiffers, S. J. Teat, J. E. Warren and M. R. Warren, Photocrystallography–design and methodology for the use of a light-emitting diode device, J. Appl. Crystallogr., 2010, 43, 337–340.

    Article  CAS  Google Scholar 

  8. B. Garetz, J. Aber, N. Goddard, R. Young and A. Myerson, Nonphotochemical, polarization-dependent, laser-induced nucleation in supersaturated aqueous urea solutions, Phys. Rev. Lett., 1996, 77, 3475.

    Article  CAS  PubMed  Google Scholar 

  9. A. Y. Kovalevsky, K. A. Bagley and P. Coppens, The first photocrystallographic evidence for light-induced metastable linkage isomers of ruthenium sulfur dioxide complexes, J. Am. Chem. Soc., 2002, 124, 9241–9248.

    Article  CAS  PubMed  Google Scholar 

  10. H. Masuhara, T. Sugiyama, T. Rungsimanon, K.-i. Yuyama, A. Miura, J.-R. Tu, Laser-trapping assembling dynamics of molecules and proteins at surface and interface, Pure Appl. Chem., 2011, 83, 869–883.

    Article  CAS  Google Scholar 

  11. T. Okutsu, Photochemically-induced crystallization of protein, J. Photochem. Photobiol., C, 2007, 8, 143–155.

    Article  CAS  Google Scholar 

  12. H. Y. Yoshikawa, R. Murai, H. Adachi, S. Sugiyama, M. Maruyama, Y. Takahashi, K. Takano, H. Matsumura, T. Inoue and S. Murakami, Laser ablation for protein crystal nucleation and seeding, Chem. Soc. Rev., 2014, 43, 2147–2158.

    Article  CAS  PubMed  Google Scholar 

  13. T. Shilpa, S. G. Bhat, V. R. Rodrigus, S. George, K. D. Aditya, C. Santhosh and A. A. Ajees, Small and macromolecules crystallization induced by focused ultrafast laser, Proc. Indian Natl. Sci. Acad., 2015, 81, 517–523.

    Article  Google Scholar 

  14. M. R. Ward and A. J. Alexander, Nonphotochemical Laser-Induced Nucleation of Potassium Halides: Effects of Wavelength and Temperature, Cryst. Growth Des., 2012, 12, 4554–4561.

    Article  CAS  Google Scholar 

  15. J. Zaccaro, J. Matic, A. S. Myerson and B. A. Garetz, Nonphotochemical, laser-induced nucleation of supersaturated aqueous glycine produces unexpected γ-polymorph, Cryst. Growth Des., 2001, 1, 5–8.

    Article  CAS  Google Scholar 

  16. K.-i. Yuyama, C.-S. Wu, T. Sugiyama and H. Masuhara, Laser trapping-induced crystallization of L-phenylalanine through its high-concentration domain formation, Photochem. Photobiol. Sci., 2014, 13, 254–260.

    Article  CAS  PubMed  Google Scholar 

  17. T. Uwada, S. Fujii, T. Sugiyama, A. Usman, A. Miura, H. Masuhara, K. Kanaizuka, M.-a. Haga, Glycine Crystallization in Solution by CW Laser-Induced Microbubble on Gold Thin Film Surface, ACS Appl. Mater. Interfaces, 2012, 4, 1158–1163.

    Article  CAS  PubMed  Google Scholar 

  18. A. Takamizawa, S. Fujimaki, J. Sunner and K. Hiraoka, Denaturation of lysozyme and myoglobin in laser spray, J. Am. Soc. Mass Spectrom., 2005, 16, 860–868.

    Article  CAS  PubMed  Google Scholar 

  19. L. Lomb, T. R. Barends, S. Kassemeyer, A. Aquila, S. W. Epp, B. Erk, L. Foucar, R. Hartmann, B. Rudek and D. Rolles, Radiation damage in protein serial femtosecond crystallography using an x-ray free-electron laser, Phys. Rev. B: Condens. Matter, 2011, 84, 214111.

    Article  CAS  Google Scholar 

  20. N. E. Chayen, Turning protein crystallisation from an art into a science, Curr. Opin. Struct. Biol., 2004, 14, 577–583.

    Article  CAS  PubMed  Google Scholar 

  21. A. McPherson and B. Cudney, Optimization of crystallization conditions for biological macromolecules, Acta Crystallogr., Sect. F: Struct. Biol. Commun., 2014, 70, 1445–1467.

    Article  CAS  Google Scholar 

  22. S. Khurshid, E. Saridakis, L. Govada and N. E. Chayen, Porous nucleating agents for protein crystallization, Nat. Protoc., 2014, 9, 1621–1633.

    Article  CAS  PubMed  Google Scholar 

  23. S. Khurshid, L. Govada, H. F. El-Sharif, S. M. Reddy and N. E. Chayen, Automating the application of smart materials for protein crystallization, Acta Crystallogr., Sect. D: Biol. Crystallogr., 2015, 71, 534–540.

    Article  CAS  Google Scholar 

  24. Y.-Z. Guo, L.-H. Sun, D. Oberthuer, C.-Y. Zhang, J.-Y. Shi, J.-L. Di, B.-L. Zhang, H.-L. Cao, Y.-M. Liu and J. Li, Utilisation of adsorption and desorption for simultaneously improving protein crystallisation success rate and crystal quality, Sci. Rep., 2014, 4, 7308.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. S. Pathak, J. A. Dharmadhikari, A. Thamizhavel, D. Mathur and A. K. Dharmadhikari, Growth of micro-crystals in solution by in-situ heating via continuous wave infrared laser light and an absorber, J. Cryst. Growth, 2016, 433, 43–47.

    Article  CAS  Google Scholar 

  26. A. Bankapur, E. Zachariah, S. Chidangil, M. Valiathan and D. Mathur, Raman tweezers spectroscopy of live, single red and white blood cells, PLoS One, 2010, 5, e10427.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. S. D. George, U. Ladiwala, J. Thomas, A. Bankapur, S. Chidangil and D. Mathur, Deposition and alignment of cells on laser-patterned quartz, Appl. Surf. Sci., 2014, 305, 375–381.

    Article  CAS  Google Scholar 

  28. G. M. Sheldrick, A short history of SHELX, Acta Crystallogr., Sect. A: Fundam. Crystallogr., 2008, 64, 112–122.

    Article  CAS  Google Scholar 

  29. M. Nardelli, PARST95–an update to PARST: a system of Fortran routines for calculating molecular structure parameters from the results of crystal structure analyses, J. Appl. Crystallogr., 1995, 28, 659–659.

    Article  CAS  Google Scholar 

  30. L. J. Farrugia, WinGX suite for small-molecule single-crystal crystallography, J. Appl. Crystallogr., 1999, 32, 837–838.

    Article  CAS  Google Scholar 

  31. K.-i. Yuyama, T. Rungsimanon, T. Sugiyama and H. Masuhara, Formation, dissolution, and transfer dynamics of a millimeter-scale thin liquid droplet in glycine solution by laser trapping, J. Phys. Chem. C, 2012, 116, 6809–6816.

    Article  CAS  Google Scholar 

  32. R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel and T. A. Witten, Capillary flow as the cause of ring stains from dried liquid drops, Nature, 1997, 389, 827–829.

    Article  CAS  Google Scholar 

  33. X. Xu and J. Luo, Marangoni flow in an evaporating water droplet, Appl. Phys. Lett., 2007, 91, 124102.

    Article  CAS  Google Scholar 

  34. W. D. Callister and D. G. Rethwisch, Materials science and engineering: an introduction, Wiley New York, 2007

    Google Scholar 

  35. L. Schulz, The optical constants of silver, gold, copper, and aluminum. I. The absorption coefficient k, J. Opt. Soc. Am., 1954, 44, 357–362.

    Article  CAS  Google Scholar 

  36. L. Schulz and F. Tangherlini, Optical constants of silver, gold, copper, and aluminum. II. The index of refraction n, J. Opt. Soc. Am., 1954, 44, 362–368.

    Article  CAS  Google Scholar 

  37. T. Rungsimanon, K.-i. Yuyama, T. Sugiyama and H. Masuhara, Crystallization in unsaturated glycine/D2O solution achieved by irradiating a focused continuous wave near infrared laser, Cryst. Growth Des., 2010, 10, 4686–4688.

    Article  CAS  Google Scholar 

  38. K. Ino, I. Udagawa, K. Iwabata, Y. Takakusagi, M. Kubota, K. Kurosaka, K. Arai, Y. Seki, M. Nogawa and T. Tsunoda, Heterogeneous nucleation of protein crystals on fluorinated layered silicate, PLoS One, 2011, 6, e22582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. X. Sun, B. A. Garetz and A. S. Myerson, Polarization Switching of Crystal Structure in the Nonphotochemical Laser-Induced Nucleation of Supersaturated Aqueous l-Histidine, Cryst. Growth Des., 2008, 8, 1720–1722.

    Article  CAS  Google Scholar 

  40. B. C. Knott, J. L. LaRue, A. M. Wodtke, M. F. Doherty and B. Peters, Communication: Bubbles, crystals, and laser-induced nucleation, J. Chem. Phys., 2011, 134, 171102.

    Article  PubMed  CAS  Google Scholar 

  41. S. Fermani, C. Vettraino, I. Bonacini, M. Marcaccio, G. Falini, J. A. Gavira, J. M. Garcia Ruiz, Heterogeneous Crystallization of Proteins: Is it a Prenucleation Clusters Mediated Process?, Cryst. Growth Des., 2013, 13, 3110–3115.

    Article  CAS  Google Scholar 

  42. S. Goryainov, E. Boldyreva and E. Kolesnik, Raman observation of a new (ζ) polymorph of glycine?, Chem. Phys. Lett., 2006, 419, 496–500.

    Article  CAS  Google Scholar 

  43. Y. Shi and L. Wang, Collective vibrational spectra of α-and γ-glycine studied by terahertz and Raman spectroscopy, J. Phys. D: Appl. Phys., 2005, 38, 3741.

    Article  CAS  Google Scholar 

  44. R. Krishnan and K. Balasubramanian, Raman spectrum of crystalline α-glycine, Proc. Math. Sci., 1958, 48, 55–61.

    Article  Google Scholar 

  45. J. Baran and H. Ratajczak, Polarised IR and Raman spectra of the γ-glycine single crystal, Spectrochim. Acta, Part A, 2005, 61, 1611–1626.

    Article  CAS  Google Scholar 

  46. V. Kocherbitov, J. Latynis, A. Misiūnas, J. Barauskas and G. Niaura, Hydration of lysozyme studied by Raman spectroscopy, J. Phys. Chem. B, 2013, 117, 4981–4992.

    Article  CAS  PubMed  Google Scholar 

  47. A. V. Frontzek, L. Paccou, Y. Guinet, A. Hédoux, Study of the phase transition in lysozyme crystals by Raman spectroscopy, Biochim. Biophys. Acta, 2016, 1860, 412–423.

    Article  CAS  PubMed  Google Scholar 

  48. N. C. Maiti, M. M. Apetri, M. G. Zagorski, P. R. Carey and V. E. Anderson, Raman spectroscopic characterization of secondary structure in natively unfolded proteins: α-synuclein, J. Am. Chem. Soc., 2004, 126, 2399–2408.

    Article  CAS  PubMed  Google Scholar 

  49. M. N. Bhat and S. Dharmaprakash, Growth of nonlinear optical γ-glycine crystals, J. Cryst. Growth, 2002, 236, 376–380.

    Article  CAS  Google Scholar 

  50. E. Ramachandran, K. Baskaran and S. Natarajan, XRD, thermal, FTIR and SEM studies on gel grown γ-glycine crystals, Cryst. Res. Technol., 2007, 42, 73–77.

    Article  CAS  Google Scholar 

  51. Y. Iitaka, The crystal structure of γ-glycine, Acta Crystallogr., 1961, 14, 1–10.

    Article  CAS  Google Scholar 

  52. K. Srinivasan, Crystal growth of α and γ glycine polymorphs and their polymorphic phase transformations, J. Cryst. Growth, 2008, 311, 156–162.

    Article  CAS  Google Scholar 

  53. S. Mondal, S. J. Prathapa, S. van Smaalen, Experimental dynamic electron densities of multipole models at different temperatures, Acta Crystallogr., Sect. A: Fundam. Crystallogr., 2012, 68, 568–581.

    Article  CAS  Google Scholar 

  54. A. McPherson and P. Shlichta, Heterogeneous and epitaxial nucleation of protein crystals on mineral surfaces, Science, 1988, 239, 385–387.

    Article  CAS  PubMed  Google Scholar 

  55. D. G. Georgieva, M. E. Kuil, T. H. Oosterkamp, H. W. Zandbergen and J. P. Abrahams, Heterogeneous nucleation of three-dimensional protein nanocrystals, Acta Crystallogr., Sect. D: Biol. Crystallogr., 2007, 63, 564–570.

    Article  CAS  Google Scholar 

  56. E. Saridakis and N. E. Chayen, Towards a ‘universal’ nucleant for protein crystallization, Trends Biotechnol., 2009, 27, 99–106.

    Article  CAS  PubMed  Google Scholar 

  57. E. Saridakis, S. Khurshid, L. Govada, Q. Phan, D. Hawkins, G. V. Crichlow, E. Lolis, S. M. Reddy and N. E. Chayen, Protein crystallization facilitated by molecularly imprinted polymers, Proc. Natl. Acad. Sci. U. S. A., 2011, 108, 11081–11086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Ajees Abdul Salam.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/c6pp00430j

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shilpa, T., George, S.D., Bankapur, A. et al. Effect of nucleants in photothermally assisted crystallization. Photochem Photobiol Sci 16, 870–882 (2017). https://doi.org/10.1039/c6pp00430j

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c6pp00430j

Navigation