Skip to main content
Log in

A simple and sensitive flow injection method based on the catalytic activity of CdS quantum dots in an acidic permanganate chemiluminescence system for determination of formaldehyde in water and wastewater

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

A simple and sensitive flow injection chemiluminescence (CL) method in which CdS quantum dots (QDs) enhanced the CL intensity of a KMnO4–formaldehyde (HCHO) reaction was offered for the determination of HCHO. This CL system was based on the catalytic activity of CdS QDs and their participation in the CL resonance energy transfer (CRET) phenomenon. A possible mechanism for the supplied CL system was proposed using the kinetic curves of the CL systems and the spectra of CL, photoluminescence (PL) and ultraviolet-visible (UV–Vis). The emanated CL intensity of the KMnO4–CdS QDs system was amplified in the presence of a trace level of HCHO. Based on this enhancement effect, a simple and sensitive flow injection CL method was suggested for the determination of HCHO concentration in environmental water and wastewater samples. Under selected optimized experimental conditions, the increased CL intensity was proportional to the HCHO concentration in the range of 0.03–4.5 μg L−1 and 4.5–10.0 μg L−1. The detection limits (3σ) were 0.0003 μg L−1 and 1.2 μg L−1. The relative standard deviations (RSD%) for eleven replicate determinations of 4.0 μg L−1 HCHO were 2.2%. Furthermore, the feasibility of the developed method was investigated via the determination of HCHO concentration in environmental water and wastewater samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. T. Salthammer, The formaldehyde dilemma, Int. J. Hyg. Environ. Health, 2015, 218, 433–436.

    Article  CAS  PubMed  Google Scholar 

  2. J. Zhao, G. Wang, T. Cao and Z. Guo, Development of a novel derivate assay for formaldehyde determination by HPLC in beer samples, Food Anal. Method, 2015, 7, 1–8.

    Article  CAS  Google Scholar 

  3. T. Salthammer, S. Mentese and R. Marutzky, Formaldehyde in the indoor environment, Chem. Rev., 2010, 110, 2536–2572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. F. A. Lobo, T. M. Santos, K. M. Vieira, V. M. Osorio and J. G. Taylor, Determination of formaldehyde in hair creams by gas chromatography-mass spectrometry, Drug Test. Anal., 2015, 7, 848–852.

    Article  CAS  PubMed  Google Scholar 

  5. P. Ma, F. Liang, D. Wang, Q. Yang, Y. Ding, Y. Yu, D. Gao, D. Song and X. Wang, Ultrasensitive determination of formaldehyde in environmental waters and food samples after derivatization and using silver nanoparticle assisted sers, Microchim. Acta, 2015, 182, 863–869.

    Article  CAS  Google Scholar 

  6. K. Motyka, A. Onjia, P. Mikuska and Z. Vecera, Flow-injection chemiluminescence determination of formaldehyde in water, Talanta, 2007, 71, 900–905.

    Article  CAS  PubMed  Google Scholar 

  7. Q. Li, M. Oshima and S. Motomizu, Flow-injection spectrofluorometric determination of trace amounts of formaldehyde in water after derivatization with acetoacetanilide, Talanta, 2007, 72, 1675–1680.

    Article  CAS  PubMed  Google Scholar 

  8. M. Arvand, E. Bozorgzadeh, S. Shariati and M. A. Zanjanchi, Ionic liquid-based dispersive liquid–liquid microextraction for the determination of formaldehyde in wastewaters and detergents, Environ. Monit. Assess., 2012, 184, 7597–7605.

    Article  CAS  PubMed  Google Scholar 

  9. J. Lawrence and J. Iyengar, The determination of formaldehyde in beer and soft drinks by HPLC of the 2, 4-dinitrophenylhydrazone derivative, Int. J. Environ. Anal. Chem., 1983, 15, 47–52.

    Article  CAS  PubMed  Google Scholar 

  10. J. R. Li, J. L. Zhu and L. F. Ye, Determination of formaldehyde in squid by high-performance liquid chromatography, Asia Pac. J. Clin. Nutr., 2007, 16, 127–130.

    PubMed  Google Scholar 

  11. W. Luo, H. Li, Y. Zhang and C. Y. Ang, Determination of formaldehyde in blood plasma by high-performance liquid chromatography with fluorescence detection, J. Chromatogr. B: Biomed. Sci. Appl., 2001, 753, 253–257.

    Article  CAS  Google Scholar 

  12. I. Ueta, S. Mochizuki, S. Kawakubo, T. Kuwabara, K. Jinno and Y. Saito, A novel miniaturized extraction capillary for determining gaseous formaldehyde by high-performance liquid chromatography, Anal. Bioanal. Chem., 2015, 407, 899–905.

    Article  CAS  PubMed  Google Scholar 

  13. A. Afkhami and M. Rezaei, Sensitive spectrophotometric determination of formaldehyde by inhibition of the malachite green–sulfite reaction, Microchem. J., 1999, 63, 243–249.

    Article  CAS  Google Scholar 

  14. A. A. Ensafi and Z. Nazemi, Determination of formaldehyde by its catalytic effect on the oxidation of pyrogallol red by bromate using flow-injection spectrophotometric detection, J. Anal. Chem., 2007, 62, 987–991.

    Article  CAS  Google Scholar 

  15. S. Feng, J. Fan, A. Wang, X. Chen and Z. Hu, Kinetic spectrophotometric determination of formaldehyde in fabric and air by sequential injection analysis, Anal. Lett., 2004, 37, 2545–2555.

    Article  CAS  Google Scholar 

  16. F. S. de Oliveira, E. T. Sousa, J. B. de Andrade, A sensitive flow analysis system for the fluorimetric determination of low levels of formaldehyde in alcoholic beverages, Talanta, 2007, 73, 561–566.

    Article  PubMed  CAS  Google Scholar 

  17. S. Girousi, E. Golia, A. Voulgaropoulos and A. Maroulis, Fluorometric determination of formaldehyde, Fresenius’ J. Anal. Chem., 1997, 358, 667–668.

    Article  CAS  Google Scholar 

  18. A. L. Lazrus, K. L. Fong and J. A. Lind, fluorometric determination of formaldehyde in air, Anal. Chem., 1988, 60, 1074–1078.

    Article  CAS  PubMed  Google Scholar 

  19. X. Q. Zhan, D. H. Li, Q. Z. Zhu, H. Zheng, J.-G. Xu, Sensitive fluorimetric determination of formaldehyde by the co-quenching effect of formaldehyde and sulfite on the fluorescence oftetra-substituted amino aluminium phthalocyanine, Analyst, 2000, 125, 2330–2334.

    Article  CAS  PubMed  Google Scholar 

  20. S. Han, J. Wang and S. Jia, Determination of formaldehyde based on the enhancement of the chemiluminescence produced by CdTe quantum dots and hydrogen peroxide, Microchim. Acta, 2014, 181, 147–153.

    Article  CAS  Google Scholar 

  21. S. Kanwal, Q. Ma, X. Fu, P. Yuan and X. Su, A flow-injection chemiluminescence determination of formaldehyde in textiles, Spectrosc. Lett., 2010, 43, 84–90.

    Article  CAS  Google Scholar 

  22. B. Li, M. Liu, Z. Zhang and C. XU, Flow-injection chemiluminescence determination of formaldehyde with a bromate-rhodamine 6G system, Anal. Sci., 2003, 19, 1643–1646.

    Article  CAS  PubMed  Google Scholar 

  23. Y. Maeda, X. Hu, S. Itou, M. Kitano, N. Takenaka, H. Bandow and M. Munemori, Continuous determination of gaseous formaldehyde by a chemiluminescence method, Analyst, 1994, 119, 2237–2240.

    Article  CAS  Google Scholar 

  24. L. P. da Silva, J. C. E. da Silva, Firefly luciferin as a multifunctional chemiluminescence molecule, Photochem. Photobiol. Sci., 2013, 12, 1615–1621.

    Article  CAS  Google Scholar 

  25. M. Iranifam, Analytical applications of chemiluminescence-detection systems assisted by magnetic microparticles and nanoparticles, TrAC, Trends Anal. Chem., 2013, 51, 51–70.

    Article  CAS  Google Scholar 

  26. A. Khataee, R. Lotfi and A. Hasanzadeh, A novel permanganate–morin–CdS quantum dots flow injection chemiluminescence system for sensitive determination of vancomycin, RSC Adv., 2015, 5, 82645–82653.

    Article  CAS  Google Scholar 

  27. S. Koronkiewicz and S. Kalinowski, Direct-injection chemiluminescence detector. Properties and potential applications in flow analysis, Talanta, 2015, 133, 112–119.

    Article  CAS  PubMed  Google Scholar 

  28. M. Iranifam, Revisiting flow-chemiluminescence techniques: pharmaceutical analysis, Luminescence, 2013, 28, 798–820.

    Article  CAS  PubMed  Google Scholar 

  29. M. Iranifam, M. Fathinia, T. S. Rad, Y. Hanifehpour, A. Khataee and S. Joo, A novel selenium nanoparticles-enhanced chemiluminescence system for determination of dinitrobutylphenol, Talanta, 2013, 107, 263–269.

    Article  CAS  PubMed  Google Scholar 

  30. A. Khataee, A. Hasanzadeh, R. Lotfi, R. Pourata and S. W. Joo, Determination of dexamethasone by flow-injection chemiluminescence method using capped CdS quantum dots, Spectrochim. Acta, Part A, 2015, 150, 63–71.

    Article  CAS  Google Scholar 

  31. A. Khataee, M. Iranifam, M. Fathinia and M. Nikravesh, Flow-injection chemiluminescence determination of cloxacillin in water samples and pharmaceutical preparation by using CuO nanosheets-enhanced luminol–hydrogen peroxide system, Spectrochim. Acta, Part A, 2015, 134, 210–217.

    Article  CAS  Google Scholar 

  32. H. Chen, L. Lin, H. Li, J.-M. Lin, Quantum dots-enhanced chemiluminescence: Mechanism and application, Coord. Chem. Rev., 2014, 263, 86–100.

    Article  CAS  Google Scholar 

  33. S. Dong, W. Guan and C. Lu, Quantum dots in organo-modified layered double hydroxide framework-improved peroxynitrous acid chemiluminescence for nitrite sensing, Sens. Actuators, B, 2013, 188, 597–602.

    Article  CAS  Google Scholar 

  34. C. Frigerio, D. S. Ribeiro, S. S. M. Rodrigues, V. L. Abreu, J. A. Barbosa, J. A. Prior, K. L. Marques and J. L. Santos, Application of quantum dots as analytical tools in automated chemical analysis: a review, Anal. Chim. Acta, 2012, 735, 9–22.

    Article  CAS  PubMed  Google Scholar 

  35. C. Guo, H. Zeng, X. Ding, D. He, J. Li, R. Yang and L. Qu, Enhanced chemiluminescence of the luminol-K3Fe(CN)6 system by ZnSe quantum dots and its application, J. Lumin., 2013, 134, 888–892.

    Article  CAS  Google Scholar 

  36. A. Patterson, The Scherrer formula for X-ray particle size determination, Phys. Rev., 1939, 56, 978.

    Article  CAS  Google Scholar 

  37. A. Khataee, R. Lotfi, A. Hasanzadeh, M. Iranifam, M. Zarei and S. W. Joo, Comparison of two methods for selegiline determination: A flow-injection chemiluminescence method using cadmium sulfide quantum dots and corona discharge ion mobility spectrometry, Spectrochim. Acta, Part A, 2016, 153, 273–280.

    Article  CAS  Google Scholar 

  38. Y. Li, P. Yang, P. Wang, X. Huang and L. Wang, CdS nanocrystal induced chemiluminescence: reaction mechanism and applications, Nanotechnology, 2007, 18, 225602.

    Article  CAS  Google Scholar 

  39. Z. Wang, J. Li, B. Liu, J. Hu, X. Yao and J. Li, Chemiluminescence of CdTe nanocrystals induced by direct chemical oxidation and its size-dependent and surfactant-sensitized effect, J. Phys. Chem. B, 2005, 109, 23304–23311.

    Article  CAS  PubMed  Google Scholar 

  40. W. W. Yu, L. Qu, W. Guo and X. Peng, Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals, Chem. Mater., 2003, 15, 2854–2860.

    Article  CAS  Google Scholar 

  41. J. Tauc, Mater. Optical properties and electronic structure of amorphous Ge and Si, Mater. Res. Bull., 1968, 3, 37–46.

    Article  CAS  Google Scholar 

  42. Z. Wang, J. Li, B. Liu and J. Li, CdTe nanocrystals sensitized chemiluminescence and the analytical application, Talanta, 2009, 77, 1050–1056.

    Article  CAS  PubMed  Google Scholar 

  43. L. Xi, W. X. W. Tan, C. Boothroyd and Y. M. Lam, Understanding and controlling the growth of monodisperse CdS nanowires in solution, Chem. Mater., 2008, 20, 5444–5452.

    Article  CAS  Google Scholar 

  44. Z. B. Yu, Y. P. Xie, G. Liu, G. Q. M. Lu, X. L. Ma, H.-M. Cheng, Self-assembled CdS/Au/ZnO heterostructure induced by surface polar charges for efficient photocatalytic hydrogen evolution, J. Mater. Chem. A, 2013, 1, 2773–2776.

    Article  CAS  Google Scholar 

  45. A. A. Aghuy, M. Zakeri, M. Moayed and M. Mazinani, Effect of grain size on pitting corrosion of 304L austenitic stainless steel, Corros. Sci., 2015, 94, 368–376.

    Article  CAS  Google Scholar 

  46. B. Ayoubi Feiz, S. Aber, A. Khataee and E. Alipour, Electrosorption and photocatalytic one-stage combined process using a new type of nanosized TiO2/activated charcoal plate electrode, Environ. Sci. Pollut. Res. Int., 2014, 21, 8555–8564.

    Article  CAS  PubMed  Google Scholar 

  47. A. Ghasemi and M. Mousavinia, Structural and magnetic evaluation of substituted NiZnFe2O4 particles synthesized by conventional sol–gel method, Ceram. Int., 2014, 40, 2825–2834.

    Article  CAS  Google Scholar 

  48. M. Koneswaran and R. Narayanaswamy, L-Cysteine-capped ZnS quantum dots based fluorescence sensor for Cu2+ ion, Sens. Actuators, B, 2009, 139, 104–109.

    Article  CAS  Google Scholar 

  49. W. Zhao, Y. Fung, O. Waisum and M. Cheung, L-cysteine-capped CdTe quantum dots as a fluorescence probe for determination of cardiolipin, Anal. Sci., 2010, 26, 879–884.

    Article  CAS  PubMed  Google Scholar 

  50. J. L. Adcock, N. W. Barnett, C. J. Barrow and P. S. Francis, Advances in the use of acidic potassium permanganate as a chemiluminescence reagent: a review, Anal. Chim. Acta, 2014, 807, 9–28.

    Article  CAS  PubMed  Google Scholar 

  51. G. Wei, C. Wei, G. Dang, H. Yao and H. Li, Determination of puerarin in pharmaceutical injection by flow injection analysis with acidic potassium permanganate–glyoxal chemiluminescence detection, Anal. Lett., 2007, 40, 2179–2191.

    Article  CAS  Google Scholar 

  52. G. Zhang, Y. Tang, H. Li, H. Yu and S. Sun, Chemiluminescence of potassium Permanganate–glyoxal–sulfur contained compound system, Anal. Lett., 2009, 42, 440–459.

    Article  CAS  Google Scholar 

  53. H. Chen, R. Li, L. Lin, G. Guo, J.-M. Lin, Determination of l-ascorbic acid in human serum by chemiluminescence based on hydrogen peroxide–sodium hydrogen carbonate–CdSe/CdS quantum dots system, Talanta, 2010, 81, 1688–1696.

    Article  CAS  PubMed  Google Scholar 

  54. M. Jaky and J. Szammer, Oxidation of aldehydes with permanganate in acidic and alkaline media, J. Phys. Org. Chem., 1997, 10, 420–426.

    Article  CAS  Google Scholar 

  55. J. L. Manzoori, M. Amjadi and J. Hassanzadeh, Enhancement of the chemiluminescence of permanganate-formaldehyde system by gold/silver nanoalloys and its application to trace determination of melamine, Microchim. Acta, 2011, 175, 47–54.

    Article  CAS  Google Scholar 

  56. A. Sproul and M. Green, Improved value for the silicon intrinsic carrier concentration from 275 to 375 K, J. Appl. Phys., 1991, 70, 846–854.

    Article  CAS  Google Scholar 

  57. S. Belman, The fluorimetric determination of formaldehyde, Anal. Chim. Acta, 1963, 29, 120–126

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Khataee.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/c5pp00452g

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khataee, A., Lotfi, R., Hasanzadeh, A. et al. A simple and sensitive flow injection method based on the catalytic activity of CdS quantum dots in an acidic permanganate chemiluminescence system for determination of formaldehyde in water and wastewater. Photochem Photobiol Sci 15, 496–505 (2016). https://doi.org/10.1039/c5pp00452g

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c5pp00452g

Navigation