Skip to main content
Log in

A theoretical exploration on electronically excited states of protonated furan and thiophene

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The geometry, electronic structures and potential energy profiles of protonated furan and thiophene have been extensively investigated, using the RI-MP2 and RI-CC2 methods. According to RI-CC2 calculated results, the adiabatic S1(1ππ*)–S0 transition energies of protonated furan and thiophene, have been predicted to be 4.41 eV and 3.70 eV respectively. Thus, protonation is accompanied by a large red shift effect on the first 1ππ* transition of the title systems (ΔE > 1.5 eV). The significant spectral-movements, predicted based on the calculated results of this work, indicate an essential effect of protonation on the geometry, electronic structures and optical characters of the five membered heterocyclic systems. In addition, it has been found that excitation of protonated furan and thiophene, with sufficient excess energy above the band origin of S1(1ππ*)–S0 transition, is accompanied by the S—C or O–C bond breaking. This mechanism is mostly governed by a dissociative 1πσ* PE profile in both protonated systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. H. Lipshutz, Five-membered heteroaromatic rings as intermediates in organic synthesis, Chem. Rev., 1986, 86, 795–819.

    Article  CAS  Google Scholar 

  2. M. Klessinger and J. Michl, Excited states and photochemistry of organic molecules, New York, 1995.

    Google Scholar 

  3. J. Michl and V. Bonacic-Koutecky, Electronic aspects of organic photochemistry, Wiley-Interscience, 1990.

    Google Scholar 

  4. E. E. Rennie, C. A. F. Johnson, J. E. Parker, D. M. P. Holland, D. A. Shaw, M. A. MacDonald, M. A. Hayes and L. G. Shpinkova, A study of the spectroscopic and thermodynamic properties of furan by means of photoabsorption, photoelectron and photoion spectroscopy, Chem. Phys., 1998, 236, 365–385.

    Article  CAS  Google Scholar 

  5. G. Buemi, F. Zuccarello and G. Romeo, Electronic spectra and excited state dipole moments of heterocyclic pentaatomic systems and their benzo and dibenzo derivatives, J. Mol. Struct., 1983, 94, 115–126.

    Google Scholar 

  6. O. Christiansen, P. Jørgensen, The electronic spectrum of furan, J. Am. Chem. Soc., 1998, 120, 3423–3430.

    Article  CAS  Google Scholar 

  7. P. J. Derrick, L. Åsbrink, O. Edqvist, B.-Ö. Jonsson and E. Lindholm, Rydberg series in small molecules: X. Photoelectron spectroscopy and electronic structure of furan, Int. J. Mass Spectrom. Ion Phys., 1971, 6, 161–175.

    Article  CAS  Google Scholar 

  8. W. M. Flicker, O. A. Mosher and A. Kuppermann, Electron impact investigation of electronic excitations in furan, thiophene, and pyrrole, J. Chem. Phys., 1976, 64, 1315–1321.

    Article  CAS  Google Scholar 

  9. N. Gavrilov, S. Salzmann and C. M. Marian, Deactivation via ring opening: A quantum chemical study of the excited states of furan and comparison to thiophene, Chem. Phys., 2008, 349, 269–277.

    Article  CAS  Google Scholar 

  10. H. Köppel, E. V. Gromov and A. B. Trofimov, Multi-mode–multi-state quantum dynamics of key five-membered heterocycles: spectroscopy and ultrafast internal conversion, Chem. Phys., 2004, 304, 35–49.

    Article  CAS  Google Scholar 

  11. M. H. Palmer, I. C. Walker, C. C. Ballard and M. F. Guest, The electronic states of furan studied by VUV absorption, near-threshold electron energy-loss spectroscopy and ab initio multi-reference configuration interaction calculations, Chem. Phys., 1995, 192, 111–125.

    Article  CAS  Google Scholar 

  12. J. G. Philis, Investigation of the electronic vibrational structure of furan by REMPI, Spectrochim. Acta, Part A, 2007, 67, 1357–1361.

    Article  CAS  Google Scholar 

  13. L. W. Pickett, A Vibrational analysis of the absorption spectrum of furan in the Schumann region, J. Chem. Phys., 1940, 8, 293–297.

    Article  CAS  Google Scholar 

  14. L. W. Pickett, N. J. Hoeflich, T.-C. Liu, The vacuum ultraviolet absorption spectra of cyclic compounds. II. Tetrahydrofuran, Tetrahydropyran, 1,4-Dioxane and Furan1, J. Am. Chem. Soc., 1951, 73, 4865–4869.

    Article  CAS  Google Scholar 

  15. L. Serrano-Andres, M. Merchan, I. Nebot-Gil, B. O. Roos and M. Fulscher, Theoretical study of the electronic spectra of cyclopentadiene, pyrrole, and furan, J. Am. Chem. Soc., 1993, 115, 6184–6197.

    Article  CAS  Google Scholar 

  16. K.-H. Thunemann, R. J. Buenker and W. Butscher, Configuration interaction study of the electronic spectrum of furan, Chem. Phys., 1980, 47, 313–320.

    Article  CAS  Google Scholar 

  17. R. S. Becker, J. Seixas de Melo, A. L. Maçanita and F. Elisei, Comprehensive Evaluation of the Absorption, Photophysical, Energy Transfer, Structural, and Theoretical Properties of a-Oligothiophenes with One to Seven Rings, J. Phys. Chem., 1996, 100, 18683–18695.

    Article  CAS  Google Scholar 

  18. H. Haberkern, K. R. Asmis, M. Allan and P. Swiderek, Triplet states in oligomeric materials: Electron energy loss spectroscopy of thiophene and bithiophene and extrapolation to the polymer, Phys. Chem. Chem. Phys., 2003, 5, 827–833.

    Article  CAS  Google Scholar 

  19. M. Kleinschmidt, J. Tatchen and C. M. Marian, Spin-orbit coupling of DFT/MRCI wavefunctions: Method, test calculations, and application to thiophene, J. Comput. Chem., 2002, 23, 824–833.

    Article  CAS  PubMed  Google Scholar 

  20. K. Watanabe and T. Nakayama, Absorption and Photoionization Coefficients of Furan Vapor, J. Chem. Phys., 1958, 29, 48–51.

    Article  CAS  Google Scholar 

  21. J. L. Roebber, D. P. Gerrity, R. Hemley and V. Vaida, Electronic spectrum of furan from 2200 to 1950 Å, Chem. Phys. Lett., 1980, 75, 104–106.

    Article  CAS  Google Scholar 

  22. O. Sorkhabi, F. Qi, A. H. Rizvi and A. G. Suits, Ultraviolet photodissociation of furan probed by tunable synchrotron radiation, J. Chem. Phys., 1999, 111, 100–107.

    Article  CAS  Google Scholar 

  23. M. Stenrup, Å. Larson, A computational study of radiationless deactivation mechanisms of furan, Chem. Phys., 2011, 379, 6–12.

    Article  CAS  Google Scholar 

  24. E. V. Gromov, A. B. Trofimov, N. M. Vitkovskaya, H. Köppel, J. Schirmer, H.-D. Meyer and L. S. Cederbaum, Theoretical study of excitations in furan: Spectra and molecular dynamics, J. Chem. Phys., 2004, 121, 4585–4598.

    Article  CAS  PubMed  Google Scholar 

  25. H. Nakano, T. Tsuneda, T. Hashimoto and K. Hirao, Theoretical study of the excitation spectra of five-membered ring compounds: Cyclopentadiene, furan, and pyrrole, J. Chem. Phys., 1996, 104, 2312–2320.

    Article  CAS  Google Scholar 

  26. L. Salem, Surface crossings and surface touchings in photochemistry, J. Am. Chem. Soc., 1974, 96, 3486–3501.

    Article  CAS  Google Scholar 

  27. S. Wilsey, M. J. Bearpark, F. Bernardi, M. Olivucci and M. A. Robb, The Role of Degenerate Biradicals in the Photorearrangement of acylcyclopropenes to furans, J. Am. Chem. Soc., 1996, 118, 4469–4479.

    Article  CAS  Google Scholar 

  28. M. H. Palmer, I. C. Walker and M. F. Guest, The electronic states of thiophene studied by optical (VUV) absorption, near-threshold electron energy-loss (EEL) spectroscopy and ab initio multi-reference configuration interaction calculations, Chem. Phys., 1999, 241, 275–296.

    Article  CAS  Google Scholar 

  29. J. Wan, M. Hada, M. Ehara and H. Nakatsuji, Electronic excitation spectrum of thiophene studied by symmetry-adapted cluster configuration interaction method, J. Chem. Phys., 2001, 114, 842–850.

    Article  CAS  Google Scholar 

  30. S. Salzmann, M. Kleinschmidt, J. Tatchen, R. Weinkauf and C. M. Marian, Excited states of thiophene: ring opening as deactivation mechanism, Phys. Chem. Chem. Phys., 2008, 10, 380–392.

    Article  CAS  PubMed  Google Scholar 

  31. A. Prlj, B. F. E. Curchod and C. Corminboeuf, Excited state dynamics of thiophene and bithiophene: new insights into theoretically challenging systems, Phys. Chem. Chem. Phys., 2015, 17, 14719–14730.

    Article  CAS  PubMed  Google Scholar 

  32. G. Desiraju and T. Steiner, The weak hydrogen bond in structural chemistry and biology, Oxford University Press/International Union of Crystallography, Oxford, 1990.

    Google Scholar 

  33. D. Mootz and A. Deeg, 2-Butyne and hydrogen chloride cocrystallized: solid-state geometry of Cl-H. cntdot.. cntdot.. cntdot.. pi. hydrogen bonding to the carbon–carbon triple bond, J. Am. Chem. Soc., 1992, 114, 5887–5888.

    Article  CAS  Google Scholar 

  34. D.-M. Huang, Y.-B. Wang, L. M. Visco, F.-M. Tao, Theoretical study of stable intermolecular complexes of furan with hydrogen halides, J. Phys. Chem. A, 2004, 108, 11375–11380.

    Article  CAS  Google Scholar 

  35. B. Saed and R. Omidyan, Electronically excited states of protonated aromatic hydrocarbons: phenanthrene and pyrene, J. Phys. Chem. A, 2013, 117, 2499–2507.

    Article  CAS  PubMed  Google Scholar 

  36. B. Saed and R. Omidyan, Protonation effect on the electronic properties of 2-pyridone monomer, dimer and its water clusters: a theoretical study, J. Chem. Phys., 2014, 140, 024315.

    Article  PubMed  CAS  Google Scholar 

  37. I. Alata, C. Dedonder, M. Broquier, E. Marceca and C. Jouvet, Role of the charge-transfer state in the electronic absorption of protonated hydrocarbon molecules, J. Am. Chem. Soc., 2010, 132, 17483–17489.

    Article  CAS  PubMed  Google Scholar 

  38. G. Grégoire, C. Jouvet, C. Dedonder and A. L. Sobolewski, Ab Initio study of the excited-state deactivation pathways of protonated tryptophan and tyrosine, J. Am. Chem. Soc., 2007, 129, 6223–6231.

    Article  PubMed  CAS  Google Scholar 

  39. I. Alata, R. Omidyan, C. Dedonder-Lardeux, M. Broquier and C. Jouvet, Electronically excited states of protonated aromatic molecules: benzaldehyde, Phys. Chem. Chem. Phys., 2009, 11, 11479–11486.

    Article  CAS  PubMed  Google Scholar 

  40. I. Alata, R. Omidyan, M. Broquier, C. Dedonder, O. Dopfer and C. Jouvet, Effect of protonation on the electronic structure of aromatic molecules: Naphthaleneh(+), Phys. Chem. Chem. Phys., 2010, 12, 14456–14458.

    Article  CAS  PubMed  Google Scholar 

  41. I. Alata, M. Broquier, C. Dedonder, C. Jouvet and E. Marceca, Electronic Excited states of protonated aromatic molecules: protonated fluorene, Chem. Phys., 2012, 393, 25–31.

    Article  CAS  Google Scholar 

  42. I. Alata, R. Omidyan, M. Broquier, C. Dedonder and C. Jouvet, Protonated salicylaldehyde: Electronic properties, Chem. Phys., 2012, 399, 224–231.

    Article  CAS  Google Scholar 

  43. TURBOMOLE, V6.3 2011, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007, TURBOMOLE GmbH, since 2007; available from http://www.turbomole.com.

  44. R. Ahlrichs, M. Bär, M. Häser, H. Horn, C. Kölmel, Electronic structure calculations on workstation computers: the program system Turbomole, Chem. Phys. Lett., 1989, 162, 165–169.

    Article  CAS  Google Scholar 

  45. R. Ahlrichs, Efficient evaluation of three-center two-electron integrals over Gaussian functions, Phys. Chem. Chem. Phys., 2004, 6, 5119–5121.

    Article  CAS  Google Scholar 

  46. K. Eichkorn, F. Weigend, O. Treutler and R. Ahlrichs, Auxiliary basis sets for main row atoms and transition metals and their use to approximate coulomb potentials, Theor. Chem. Acc., 1997, 97, 119–124.

    Article  CAS  Google Scholar 

  47. F. Haase and R. Ahlrichs, Semidirect MP2 gradient evaluation on workstation computers: the mpgrad program, J. Comput. Chem., 1993, 14, 907–912.

    Article  CAS  Google Scholar 

  48. C. Hättig, Geometry Optimizations with the coupled-cluster model cc2 using the resolution-of-the-identity approximation, J. Chem. Phys., 2003, 118, 7751–7761.

    Article  CAS  Google Scholar 

  49. C. Hättig, A. Köhn, Transition Moments and excited-state first-order properties in the coupled-cluster model cc2 using the resolution-of-the-identity approximation, J. Chem. Phys., 2002, 117, 6939–6951.

    Article  CAS  Google Scholar 

  50. C. Hättig and F. Weigend, CC2 Excitation energy calculations on large molecules using the resolution of the identity approximation, J. Chem. Phys., 2000, 113, 5154–5161.

    Article  Google Scholar 

  51. T. H. Dunning, Gaussian Basis sets for use in correlated molecular calculations. i. the atoms boron through neon and hydrogen, J. Chem. Phys., 1989, 90, 1007–1023.

    Article  CAS  Google Scholar 

  52. A. Hellweg, C. Hättig, S. Höfener and W. Klopper, Optimized accurate auxiliary basis sets for ri-mp2 and ri-cc2 calculations for the atoms Rb to Rn, Theor. Chem. Acc., 2007, 117, 587–597.

    Article  CAS  Google Scholar 

  53. R. A. Kendall, T. H. Dunning and R. J. Harrison, Electron Affinities of the first-row atoms revisited. systematic basis sets and wave functions, J. Chem. Phys., 1992, 96, 6796–6806.

    Article  CAS  Google Scholar 

  54. E. P. L. Hunter and S. G. Lias, Evaluated gas phase basicities and proton affinities of molecules: an update, J. Phys. Chem. Ref. Data, 1998, 27, 413–656.

    Article  CAS  Google Scholar 

  55. S. Perun, A. L. Sobolewski and W. Domcke, Conical intersections in thymine, J. Phys. Chem. A, 2006, 110, 13238–13244.

    Article  CAS  PubMed  Google Scholar 

  56. S. Chakraborty, R. Omidyan, I. Alata, I. B. Nielsen, C. Dedonder, M. Broquier and C. Jouvet, Protonated benzene dimer: an experimental and ab initio study, J. Am. Chem. Soc., 2009, 131, 11091–11097.

    Article  CAS  PubMed  Google Scholar 

  57. G. Douberly, A. Ricks, P. v. R. Schleyer and M. Duncan, Infrared Spectroscopy of gas phase benzenium ions: protonated benzene and protonated toluene, from 750 to 3400 cm–1, J. Phys. Chem. A, 2008, 112, 4869–4874.

    Article  CAS  PubMed  Google Scholar 

  58. O. V. Boyarkin, S. R. Mercier, A. Kamariotis and T. R. Rizzo, Electronic spectroscopy of cold, protonated tryptophan and tyrosine, J. Am. Chem. Soc., 2006, 128, 2816–2817.

    Article  CAS  PubMed  Google Scholar 

  59. S. Azizkarimi, R. Omidyan and G. Azimi, Electronically excited states of protonated phenol and para-substituted phenol, Chem. Phys. Lett., 2013, 555, 19–25.

    Article  CAS  Google Scholar 

  60. G. Cui and W. Fang, Ab Initio trajectory surface-hopping study on ultrafast deactivation process of thiophene, J. Phys. Chem. A, 2011, 115, 11544–11550.

    Article  CAS  PubMed  Google Scholar 

  61. D. Fazzi, M. Barbatti and W. Thiel, Modeling ultrafast exciton deactivation in oligothiophenes via nonadiabatic dynamics, Phys. Chem. Chem. Phys., 2015, 17, 7787–7799.

    Article  CAS  PubMed  Google Scholar 

  62. R. Weinkauf, L. Lehr, E. W. Schlag, S. Salzmann and C. M. Marian, Ultrafast dynamics in thiophene investigated by femtosecond pump probe photoelectron spectroscopy and theory, Phys. Chem. Chem. Phys., 2008, 10, 393–404.

    Article  CAS  PubMed  Google Scholar 

  63. A. J. A. Aquino, H. Lischka, C. Hättig, Excited-state intramolecular proton transfer: a survey of tddft and ri-cc2 excited-state potential energy surfaces, J. Phys. Chem. A, 2005, 109, 3201–3208.

    Article  CAS  PubMed  Google Scholar 

  64. A. J. A. Aquino, F. Plasser, M. Barbatti and H. Lischka, Ultrafast excited-state proton transfer processes: energy surfaces and on-the-fly dynamics simulations, Croat. Chem. Acta, 2009, 82, 105–113.

    CAS  Google Scholar 

  65. M. F. Rode, A. L. Sobolewski, C. Dedonder, C. Jouvet and O. Dopfer, Computational study on the photophysics of protonated benzene, J. Phys. Chem. A, 2009, 113, 5865–5873.

    Article  CAS  PubMed  Google Scholar 

  66. A. L. Sobolewski and W. Domcke, Photophysics of intramolecularly hydrogen-bonded aromatic systems: ab initio exploration of the excited-state deactivation mechanisms of salicylic acid, Phys. Chem. Chem. Phys., 2006, 8, 3410–3417.

    Article  CAS  PubMed  Google Scholar 

  67. A. L. Sobolewski and W. Domcke, Photophysics of eumelanin: ab initio studies on the electronic spectroscopy and photochemistry of 5,6-dihydroxyindole, Chem. Phys. Chem., 2007, 8, 756–762.

    Article  CAS  PubMed  Google Scholar 

  68. A. L. Sobolewski, W. Domcke, C. Hättig, Photophysics of organic photostabilizers. ab initio study of the excited-state deactivation mechanisms of 2-(2’-hydroxyphenyl)benzotriazole, J. Phys. Chem. A, 2006, 110, 6301–6306.

    Article  CAS  PubMed  Google Scholar 

  69. A. L. Sobolewski, D. Shemesh and W. Domcke, Computational studies of the photophysics of neutral and zwitterionic amino acids in an aqueous environment: Tyrosine–(H2O) 2 and Tryptophan-(H2O) 2 Clusters, J. Phys. Chem. A, 2008, 113, 542–550.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Omidyan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omidyan, R., Salehi, M. & Heidari, Z. A theoretical exploration on electronically excited states of protonated furan and thiophene. Photochem Photobiol Sci 14, 2261–2269 (2015). https://doi.org/10.1039/c5pp00266d

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c5pp00266d

Navigation