Skip to main content
Log in

Current concept of photocarcinogenesis

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

There is ample evidence demonstrating that solar ultraviolet light (UV) induces human skin cancers. First, epidemiological studies have demonstrated a negative correlation between the latitude of residence and incidence and mortality rates of both melanoma and non-melanoma skin cancers in homogeneous populations. Second, skin cancer can be produced in mice by UV irradiation; the action spectrum of photocarcinogenesis falls into UVB (280–320 nm). Third, patients with genetic disorders that lead to deficiencies in repairing UV-induced DNA damage are prone to develop cancers in sun-exposed areas of the skin. Photocarcinogenesis is a multistage process that involves initiation, promotion, and progression. In addition UV induced immunosuppression is closely involved in photocarcinogenesis. Accumulation of DNA lesions caused by UV in several cancer related genes plays a crucial role in carcinogenesis. Indeed, even in actinic keratosis, precancerous lesions, genetic alterations can be observed. A conventional knowledge demonstrated that UVB induced DNA lesion causes genetic mutation (initiation) and UVB-inflammation (sunburn) induces promotion. However recent findings revealed that the photocarcinogenesis pathway is more complex consequences where each of these processes, mediated by various cellular, biochemical, and molecular changes, are closely related to each other. The pyrimidine photoproducts that result from direct DNA damage induced by UV are involved in developing skin cancer through mutations that lead to the upregulation or downregulation of signal transduction pathways, cell cycle dysregulation, and depletion of antioxidant defenses. In addition pyrimidine dimers have been shown to trigger UV induced immunosuppression, which also plays an important role in photocarcinogenesis, partly by upregulation of IL-10, an immunosuppressive cytokine. UV also produces oxidative stress and oxidative DNA damage in skin cells, which cause alteration of the genes involved in the cell cycle, apoptosis and modification of cell signaling by redox regulation, resulting in inflammation. It has been shown that in Ogg1 knockout mice which are deficient in repairing 8-oxo-7, 8-dihydroguanine (8-oxoG), UVB irradiation up-regulates the inflammatory gene, implying that 8-oxoG is involved in triggering inflammation. In this review I summarize the state of the art knowledge regarding photocarcinogenesis including experimental data and implication for clinical viewpoints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. K. Armstrong and A. Kricker, The epidemiology of UV induced skin cancer, J. Photochem. Photobiol., B, 2001, 63, 8–18.

    Article  CAS  Google Scholar 

  2. M. Das, D. R. Bickers, R. M. Santella and H. Mukhtar, Altered patterns of cutaneous xenobiotic metabolism in UVB-induced squamous cell carcinoma in SKH-1 hairless mice, J. Invest. Dermatol., 1985, 84, 532–536.

    Article  CAS  PubMed  Google Scholar 

  3. C. Nishigori, M. Tanaka, S. Moriwaki, S. Imamura and H. Takebe, Accelerated appearance of skin tumors in hairless mice by repeated UV irradiation with initial intense exposure and characterization of the tumors, Jpn. J. Cancer Res., 1992, 83, 1172–1178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. C. Nishigori, S. Moriwaki, H. Takebe, T. Tanaka and S. Imamura, Gene alterations and clinical characteristics of xeroderma pigmentosum group A patients in Japan, Arch. Dermatol., 1994, 130, 191–197.

    Article  CAS  PubMed  Google Scholar 

  5. A. Ziegler, A. S. Jonason, D. J. Leffell, J. A. Simon, H. W. Sharma, J. Kimmelman, L. Remington, T. Jacks and D. E. Brash, Sunburn and p53 in the onset of skin cancer, Nature, 1994, 372, 773–776.

    Article  CAS  PubMed  Google Scholar 

  6. C. Nishigori, Y. Hattori and S. Toyokuni, Role of reactive oxygen species in skin carcinogenesis, Antioxid. Redox Signaling, 2004, 6, 561–570.

    Article  CAS  Google Scholar 

  7. M. L. Kripke, Antigenicity of murine skin tumors induced by ultraviolet light, J. Natl. Cancer Inst., 1974, 53, 1333–1336.

    Article  CAS  PubMed  Google Scholar 

  8. C. Nishigori, D. B. Yarosh, S. E. Ullrich, A. A. Vink, C. D. Bucana, L. Roza and M. L. Kripke, Evidence that DNA damage triggers interleukin 10 cytokine production in UV-irradiated murine keratinocytes, Proc. Natl. Acad. Sci. U. S. A., 1996, 93, 10354–10359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. M. Kunisada, F. Yogianti, K. Sakumi, R. Ono, Y. Nakabeppu and C. Nishigori, Increased expression of versican in the inflammatory response to UVB- and reactive oxygen species-induced skin tumorigenesis, Am. J. Pathol., 2011, 179, 3056–3065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. E. Kvam and R. M. Tyrrell, Induction of oxidative DNA base damage in human skin cells by UV and near visible radiation, Carcinogenesis, 1997, 18, 2379–2384.

    Article  CAS  PubMed  Google Scholar 

  11. M. J. Ellison and J. D. Childs, Pyrimidine dimers induced in Escherichia coli DNA by ultraviolet radiation present in sunlight, Photochem. Photobiol., 1981, 34, 465–469.

    Article  CAS  PubMed  Google Scholar 

  12. R. Ono, T. Masaki, S. Dien, X. Yu, A. Fukunaga, J. Yodoi and C. Nishigori, Suppressive effect of recombinant human thioredoxin on ultraviolet light-induced inflammation and apoptosis in murine skin, J. Dermatol., 2012, 39, 843–851.

    Article  CAS  PubMed  Google Scholar 

  13. M. Kunisada, K. Sakumi, Y. Tominaga, A. Budiyanto, M. Ueda, M. Ichihashi, Y. Nakabeppu and C. Nishigori, 8-Oxoguanine formation induced by chronic ultraviolet B exposure makes ogg1 knockout mice susceptible to skin carcinogenesis, Cancer Res., 2005, 65, 6006–6010.

    Article  CAS  PubMed  Google Scholar 

  14. K. Ito, S. Inoue, K. Yamamoto and S. Kawanishi, 8-Hydroxydeoxyguanosine formation at the 5′ site of 5′-GG-3′ sequences in double-stranded DNA by UV radiation with riboflavin, J. Biol. Chem., 1993, 268, 13221–13227.

    Article  CAS  PubMed  Google Scholar 

  15. A. Besaratinia, T. W. Synold, B. Xi and G. P. Pfeifer, G-to-T transversions and small tandem base deletions are the hallmark of mutations induced by ultraviolet A radiation in mammalian cells, Biochemistry, 2004, 43, 8169–8177.

    Article  CAS  PubMed  Google Scholar 

  16. E. A. Drobetsky, J. Turcotte and A. Châteauneuf, A role for ultraviolet A in solar mutagenesis, Proc. Natl. Acad. Sci. U. S. A., 1995, 92, 2350–2354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. T. Douki, A. Reynaud-Angelin, J. Cadet and E. Sage, Bipyrimidine photoproducts rather than oxidative lesions are the main type of DNA damage involved in the genotoxic effect of solar UVA radiation, Biochemistry, 2003, 43, 9221–9226.

    Article  CAS  Google Scholar 

  18. S. Courdavault, C. Baudouin, M. Charveron, A. Favier, J. Cadet and T. Douki, Larger yield of cyclobutane dimers than 8-oxo-7,8-dihydroguanine in the DNA of UVA-irradiated human skin cells, Mutat. Res., 2004, 556, 135–142.

    Article  CAS  PubMed  Google Scholar 

  19. S. Mouret, C. Baudouin, M. Charveron, A. Favier, J. Cadet and T. Douki, Cyclobutane pyrimidine dimers are predominant DNA lesions in whole human skin exposed to UVA radiation, Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 13765–13770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. M. Kunisada, T. Masaki, R. Ono, H. Morinaga, E. Nakano, F. Yogianti, K. Okunishi, H. Sugiyama and C. Nishigori, Hydrochlorothiazide enhances UVA-induced DNA damage, Photochem. Photobiol., 2013, 89, 649–654.

    Article  CAS  PubMed  Google Scholar 

  21. F. de Gruijl, Action spectrum for photocarcinogenesis, Recent. Results, Cancer Res., 1995, 139, 21–30.

    Google Scholar 

  22. J. Miller, Mutagenic specificity of ultraviolet light, J. Mol. Biol., 1985, 182, 45–65.

    Article  CAS  PubMed  Google Scholar 

  23. W. E. Pierceall, L. H. Goldberg, M. A. Tainsky, T. Mukhopadhyay and H. N. Ananthaswamy, Ras gene mutation and amplification in human nonmelanoma skin cancers, Mol. Carcinog., 1991, 4, 196–202.

    Article  CAS  PubMed  Google Scholar 

  24. C. Nishigori, S. Wang, J. Miyakoshi, M. Sato, T. Tsukada, T. Yagi, S. Imamura and H. Takebe, Mutations in ras genes in cells cultured from mouse skin tumors induced by ultraviolet irradiation, Proc. Natl. Acad. Sci. U. S. A., 1994, 91, 7189–7193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. H. Takebe, C. Nishigori and Y. Satoh, Genetics and skin cancer of xeroderma pigmentosum in Japan, Jpn. J. Cancer Res., 1987, 78, 1135–1143.

    CAS  PubMed  Google Scholar 

  26. M. Sato, C. Nishigori, M. Zghal, T. Yagi and H. Takebe, Ultraviolet specific mutations in p53 gene in skin tumors in xeroderma pigmentosum patients, Cancer Res., 1993, 53, 2944–2946.

    CAS  PubMed  Google Scholar 

  27. A. Spatz, G. Giglia-Mari, S. Benhamou and A. Sarasin, Association between DNA repair-deficiency and high level of p53 mutations in melanoma of Xeroderma pigmentosum, Cancer Res., 2001, 61, 2480–2486.

    CAS  PubMed  Google Scholar 

  28. Y. Matsumura, M. Sato, C. Nishigori, M. Zghal, T. Yagi, S. Imamura and H. Takebe, High prevalence of mutations in the p53 gene in poorly differentiated squamous cell carcinomas in xeroderma pigmentosum patients, J. Invest. Dermatol., 1995, 105, 399–401.

    Article  CAS  PubMed  Google Scholar 

  29. M. Sato, C. Nishigori, Y. Lu, M. Zghal, T. Yagi and H. Takebe, Far less frequent mutations in ras genes than in the p53 gene in skin tumors of xeroderma pigmentosum patients, Mol. Carcinog., 1994, 11, 98–105.

    Article  CAS  PubMed  Google Scholar 

  30. C. Nishigori, Cellular aspects of photocarcinogenesis, Photochem. Photobiol. Sci., 2006, 5, 208–214.

    Article  CAS  PubMed  Google Scholar 

  31. Y. Devary, R. A. Gottlieb, T. Smeal and M. Karin, The mammalian ultraviolet response is triggered by activation of src tyrosine kinases, Cell, 1992, 71, 1081–1091.

    Article  CAS  PubMed  Google Scholar 

  32. W. Köpcke and J. Krutmann, Protection from sunburn with beta-carotene–a meta-analysis, Photochem. Photobiol., 2008, 84, 284–288.

    Article  PubMed  CAS  Google Scholar 

  33. Y. Sun and L. W. Oberley, Redox regulation of transcriptional activators, Free Radicals Biol. Med., 1996, 21, 335–348.

    Article  CAS  Google Scholar 

  34. L. Rittié and G. J. Fisher, UV-light-induced signal cascades and skin aging, Ageing Res. Rev., 2002, 1, 705–720.

    Article  PubMed  Google Scholar 

  35. J. Hildesheim, T. A. Rania and A. J. Fornace, p38 Mitogen-activated protein kinase inhibitor protects the epidermis against the acute damaging effects of ultraviolet irradiation by blocking apoptosis and inflammatory responses, J. Invest. Dermatol., 2004, 122, 497–502.

    Article  CAS  PubMed  Google Scholar 

  36. A. L. Kim, J. M. Labasi, Y. Zhu, X. Tang, K. McClure, C. A. Gabel, M. Athar and D. R. Bickers, Role of p38 MAPK in UVB-induced inflammatory responses in the skin of SKH-1 hairless mice, J. Invest. Dermatol., 2005, 124, 1318–1325.

    Article  CAS  PubMed  Google Scholar 

  37. R. J. Moore, D. M. Owens, G. Stamp, C. Arnott, F. Burke, N. East, H. Holdsworth, L. Turner, B. Rollins, M. Pasparakis, G. Kollias and F. Balkwill, Mice deficient in tumor necrosis factor-alpha are resistant to skin carcinogenesis, Nat. Med., 1999, 5, 828–831.

    Article  CAS  PubMed  Google Scholar 

  38. C. H. Arnott, K. A. Scott, R. J. Moore, A. Hewer, D. H. Phillips, P. Parker, F. R. Balkwill and D. M. Owens, Tumour necrosis factor-alpha mediates tumour promotion via a PKC alpha- and AP-1-dependent pathway, Oncogene, 2002, 21, 4728–4738.

    Article  CAS  PubMed  Google Scholar 

  39. S. Toyokuni, K. Okamoto, J. Yodoi and H. Hiai, Persistent oxidative stress in cancer, FEBS Lett., 1995, 358, 1–3.

    Article  CAS  PubMed  Google Scholar 

  40. D. Crawford, I. Zbinden, P. Amstad and P. Cerutti, Oxidant stress induces the proto-oncogenes c-fos and c-myc in mouse epidermal cells, Oncogene, 1988, 3, 27–32.

    CAS  Google Scholar 

  41. Y. Hattori, C. Nishigori, T. Tanaka, K. Uchida, O. Nikaido, T. Osawa, H. Hiai, S. Imamura and S. Toyokuni, 8-Hydroxy-2′-deoxyguanosine is increased in epidermal cells of hairless mice after chronic ultraviolet B exposure, J. Invest. Dermatol., 1996, 107, 733–737.

    Article  CAS  PubMed  Google Scholar 

  42. J. Sheu, E. B. Hawryluk, D. Guo, W. B. London and J. T. Huang, Voriconazole phototoxicity in children: a retrospective review, J. Am. Acad. Dermatol., 2015, 72, 314–320.

    Article  CAS  PubMed  Google Scholar 

  43. U. Giri, S. D. Sharma, M. Abdulla and M. Athar, Evidence that in situ generated reactive oxygen species act as a potent stage I tumor promoter in mouse skin, Biochem. Biophys. Res. Commun., 1995, 209, 698–705.

    Article  CAS  PubMed  Google Scholar 

  44. Y. Bai, H. Edamatsu, S. Maeda, H. Saito, N. Suzuki, T. Satoh and T. Kataoka, Crucial role of phospholipase Cepsilon in chemical carcinogen-induced skin tumor development, Cancer Res., 2004, 64, 8808–8810.

    Article  CAS  PubMed  Google Scholar 

  45. M. Oka, H. Edamatsu, M. Kunisada, L. Hu, N. Takenaka, S. Dien, M. Sakaguchi, R. Kitazawa, K. Norose, T. Kataoka and C. Nishigori, Enhancement of ultraviolet B-induced skin tumor development in phospholipase Cε-knockout mice is associated with decreased cell death, Carcinogenesis, 2010, 31, 1897–1902.

    Article  CAS  PubMed  Google Scholar 

  46. R. Gopalakrishna and S. Jaken, Protein kinase C signaling and oxidative stress, Free Radicals Biol. Med., 2000, 28, 1349–1361.

    Article  CAS  Google Scholar 

  47. F. Yogianti, M. Kunisada, R. Ono, K. Sakumi, Y. Nakabeppu and C. Nishigori, Skin tumours induced by narrowband UVB have higher frequency of p53 mutations than tumours induced by broadband UVB independent of Ogg1 genotype, Mutagenesis., 2012, 27, 637–643.

    Article  CAS  PubMed  Google Scholar 

  48. F. Rodier, J. P. Coppé, C. K. Patil, W. A. Hoeijmakers, D. P. Muñoz, S. R. Raza, A. Freund, E. Campeau, A. R. Davalos and J. Campisi, Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion, Nat. Cell Biol., 2009, 11, 973–979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. F. Yogiant, M. Kunisada, E. Nakano, R. Ono, K. Sakumi, S. Oka, Y. Nakabeppu and C. Nishigori, Inhibitory effects of dietary Spirulina platensis on UVB-induced skin inflammatory responses and carcinogenesis, J. Invest. Dermatol., 2014, 134, 2610–2619.

    Article  CAS  Google Scholar 

  50. Y. Sato, Y. Goto, N. Narita and D. S. Hoon, Cancer cells expressing Toll-like receptors and the tumor microenvironment, Cancer Microenviron., 2009, 2suppl 1, 205–214.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. F. P. Noonan, J. A. Recio, H. Takayama, P. Duray, M. R. Anver, W. L. Rush, E. C. De Fabo and G. Merlino, Neonatal sunburn and melanoma in mice, Nature, 2001, 413, 271–272.

    Article  CAS  PubMed  Google Scholar 

  52. P. Autier and J. F. Doré, Influence of sun exposures during childhood and during adulthood on melanoma risk. EPIMEL and EORTC Melanoma Cooperative Group. European Organisation for Research and Treatment of Cancer, Int. J. Cancer, 1998, 77, 533–537.

    Article  CAS  PubMed  Google Scholar 

  53. D. C. Whiteman, C. A. Whiteman and A. C. Green, Childhood sun exposure as a risk factor for melanoma: a systematic review of epidemiologic studies, Cancer Causes Control, 2001, 12, 69–82.

    Article  CAS  PubMed  Google Scholar 

  54. M. R. Zaidi, S. Davis, F. P. Noonan, C. Graff-Cherry, T. S. Hawley, R. L. Walker, L. Feigenbaum, E. Fuchs, L. Lyakh, H. A. Young, T. J. Hornyak, H. Arnheiter, G. Trinchieri, P. S. Meltzer, E. C. De Fabo and G. Merlino, Interferon-γ links ultraviolet radiation to melanomagenesis in mice, Nature, 2011, 469, 548–553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. R. B. Setlow, E. Grist, K. Thompson and A. D. Woodhead, Wavelengths effective in induction of malignant melanoma, Proc. Natl. Acad. Sci. U. S. A., 1993, 90, 6666–6670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. D. L. Mitchell, A. A. Fernandez, R. S. Nairn, R. Garcia, L. Paniker, D. Trono, H. D. Thames and I. Gimenez-Conti, Ultraviolet A does not induce melanomas in a Xiphophorus hybrid fish model, Proc. Natl. Acad. Sci. U. S. A., 2010, 107, 9329–9334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. F. P. Noonan, M. R. Zaidi, A. Wolnicka-Glubisz, M. R. Anver, J. Bahn, A. Wielgus, J. Cadet, T. Douki, S. Mouret, M. A. Tucker, A. Popratiloff, G. Merlino and E. C. De Fabo, Melanoma induction by ultraviolet A but not ultraviolet B radiation requires melanin pigment, Nat. Commun., 2012, 3, 884.

    Article  PubMed  CAS  Google Scholar 

  58. H. Z. Hill and G. J. Hill, UVA, pheomelanin and the carcinogenesis of melanoma, Pigm. Cell Res., 2000, 13Suppl 8, 140–144.

    Article  Google Scholar 

  59. M. T. Glover, N. Niranjan, J. T. Kwan and I. M. Leigh, Non-melanoma skin cancer in renal transplant recipients: the extent of the problem and a strategy for management, Br. J. Plast. Surg., 1994, 47, 86–89.

    Article  CAS  PubMed  Google Scholar 

  60. L. Naldi, Malignancy concerns with psoriasis treatments using phototherapy, methotrexate, cyclosporin, and biologics: facts and controversies, Clin. Dermatol., 2010, 28, 88–92.

    Article  PubMed  Google Scholar 

  61. J. M. Rivas and S. E. Ullrich, The role of IL-4, IL-10, and TNF-α in the immune suppression induced by ultraviolet radiation, J. Leukocyte Biol., 1994, 56, 769–775.

    Article  CAS  PubMed  Google Scholar 

  62. V. Shreedhar, T. Giese, V. W. Sung and S. E. Ullrich, A cytokine cascade including prostaglandin E2, IL-4, and IL-10 is responsible for UV-induced systemic immune suppression, J. Immunol., 1998, 160, 3783–3789.

    CAS  PubMed  Google Scholar 

  63. K. Loser, J. Apelt, M. Voskort, M. Mohaupt, S. Balkow, T. Schwarz, S. Grabbe and S. Beissert, IL-10 controls ultraviolet-induced carcinogenesis in mice, J. Immunol., 2007, 179, 365–371.

    Article  CAS  PubMed  Google Scholar 

  64. T. Nagano, M. Kunisada, X. Yu, T. Masaki and C. Nishigori, Involvement of interleukin-10 promoter polymorphism in non-melanoma skin cancers–A case study in non-carcinoma skin cancer patients, Photochem. Photobiol., 2008, 84, 63–66.

    Article  CAS  PubMed  Google Scholar 

  65. E. Alamartine, P. Berthoux, C. Mariat, F. Cambazard and F. Berthoux, Interleukin-10 promoter polymorphisms and susceptibility to skin squamous cell carcinoma after renal transplantation, J. Invest. Dermatol., 2003, 120, 99–103.

    Article  PubMed  Google Scholar 

  66. G. M. Halliday, Inflammation, gene mutation and photoimmunosuppression in response to UVR-induced oxidative damage contributes to photocarcinogenesis, Mutat. Res., 2005, 571, 107–120.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chikako Nishisgori.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishisgori, C. Current concept of photocarcinogenesis. Photochem Photobiol Sci 14, 1713–1721 (2015). https://doi.org/10.1039/c5pp00185d

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c5pp00185d

Navigation