Skip to main content
Log in

A light-regulated bZIP module, photozipper, induces the binding of fused proteins to the target DNA sequence in a blue light-dependent manner

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Aureochrome-1 (AUREO1) has been identified as a blue light (BL) receptor responsible for the BL-induced blanching of a stramenopile alga, Vaucheria frigida. BL induces the dimerization of monomeric AUREO1, which subsequently increases its affinity for the target sequence. We made a synthetic gene encoding N-terminally truncated monomeric AUREO1 (Photozipper protein) containing a basic region/leucine zipper (bZIP) domain and a light-oxygen-voltage-sensing domain. In the present study, yellow fluorescent protein or mCherry protein was fused with the Photozipper (PZ) protein, and their oligomeric structures and DNA-binding were compared in the dark and light states. Dynamic light scattering and size exclusion chromatography demonstrated that the hydrodynamic radii and molecular masses of the fusion proteins increased upon BL illumination, suggesting that fusion PZs underwent BL-induced dimerization. Moreover, BL-induced dimerization enhanced their affinities for the target sequence. Taken together, PZ likely functions as a BL-regulated bZIP module in fusion proteins, and can possibly provide a new approach for controlling bZIP transcription factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. J. M. Christie, Annu. Rev. Plant Biol., 2007, 58, 21–45.

    Article  CAS  Google Scholar 

  2. T. Imaizumi, H. G. Tran, T. E. Swartz, W. R. Briggs, S. A. Kay, Nature, 2003, 426, 302–306.

    Article  CAS  Google Scholar 

  3. M. Avila-Pérez, J. Vreede, Y. Tang, O. Bende, A. Losi, W. Gärtner, K. Hellingwerf, J. Biol. Chem., 2009, 284, 24958–24964.

    Article  Google Scholar 

  4. T. E. Swartz, T. Tseng, M. A. Frederickson, G. Paris, D. J. Comerci, G. Rajashekara, J.-G. Kim, M. B. Mudgett, G. A. Splitter, R. A. Ugalde, F. A. Goldbaum, W. R. Briggs, R. A. Bogomolni, Science, 2007, 317, 1090–1093.

    Article  CAS  Google Scholar 

  5. E. B. Purcell, D. Siegal-Gaskins, D. C. Rawling, A. Fiebig, S. S. Crosson, Proc. Natl. Acad. Sci. U. S. A., 2007, 104, 18241–18246.

    Article  CAS  Google Scholar 

  6. E. B. Djouani-Tahr, J. M. Christie, S. Sanchez-Ferandin, F. Sanchez, F. Y. Bouget, F. Corellou, Plant J., 2011, 65, 578–588.

    Article  Google Scholar 

  7. M. Salomon, J. M. Christie, E. Kneib, U. Lempert, W. R. Briggs, Biochemistry, 2000, 39, 9401–9410.

    Article  CAS  Google Scholar 

  8. T. E. Swartz, S. B. Corchnoy, J. M. Christie, J. W. Lewis, I. Szundi, W. R. Briggs, R. A. Bogomolni, J. Biol. Chem., 2001, 276, 36493–36500.

    Article  CAS  Google Scholar 

  9. T. Iwata, S. Tokutomi, H. Kandori, J. Am. Chem. Soc., 2002, 124, 11840–11841.

    Article  CAS  Google Scholar 

  10. J. Lee, M. Natarajan, V. C. Nashine, M. Socolich, T. Vo, W. P. Russ, S. J. Benkovic, R. Ranganathan, Science, 2008, 322, 438–442.

    Article  CAS  Google Scholar 

  11. M. Yazawa, A. M. Sadaghiani, B. Hsueh, R. E. Dolmetsch, Nat. Biotechnol., 2009, 27, 941–945.

    Article  CAS  Google Scholar 

  12. Y. I. Wu, D. Frey, O. I. Lungu, A. Jaehrig, I. Schlichting, B. Kuhlman, K. M. Hahn, Nature, 2009, 461, 104–108.

    Article  CAS  Google Scholar 

  13. U. Krauss, J. Lee, S. J. Benkovic, K. E. Jaeger, Microbiol. Biotechnol., 2010, 3, 15–23.

    Article  CAS  Google Scholar 

  14. A. Moglich, R. A. Ayers, K. Moffat, J. Mol. Biol., 2010, 400, 477–486.

    Article  Google Scholar 

  15. X. Wang, X. Chen, Y. Yang, Nat. Methods, 2012, 9, 266–269.

    Article  CAS  Google Scholar 

  16. D. Strickland, Y. Lin, E. Wagner, C. M. Hope, J. Zayner, C. Antoniou, T. R. Sosnick, E. L. Weiss, M. Glotzer, Nat. Methods, 2012, 9, 379–384.

    Article  CAS  Google Scholar 

  17. L. R. Polstein, C. A. Gersbach, J. Am. Chem. Soc., 2012, 134, 16480–16483.

    Article  CAS  Google Scholar 

  18. O. I. Lungu, R. A. Hallett, E. J. Choi, M. J. Aiken, K. M. Hahn, B. Kuhlman, Chem. Biol., 2012, 19, 507–517.

    Article  CAS  Google Scholar 

  19. C. Renicke, D. Schuster, S. Usherenko, L. O. Essen, C. A. Taxis, Chem. Biol., 2013, 20, 619–626.

    Article  CAS  Google Scholar 

  20. F. Takahashi, D. Yamagata, M. Ishikawa, Y. Fukamatsu, Y. Ogura, M. Kasahara, T. Kiyosue, M. Kikuyama, M. Wada, H. Kataoka, Proc. Natl. Acad. Sci. U. S. A., 2007, 104, 19625–19630.

    Article  CAS  Google Scholar 

  21. M. Ishikawa, F. Takahashi, H. Nozaki, C. Nagasato, T. Motomura, H. Kataoka, Planta, 2009, 230, 543–552.

    Article  CAS  Google Scholar 

  22. E. Malzahn, S. Ciprianidis, K. Káldi, T. Schafmeier, M. Brunner, Cell, 2010, 142, 762–772.

    Article  CAS  Google Scholar 

  23. A. I. Nash, R. McNulty, M. E. Shillito, T. E. Swartz, R. A. Bogomolni, H. Luecke, K. H. Gardner, Proc. Natl. Acad. Sci. U. S. A., 2011, 108, 9449–9454.

    Article  CAS  Google Scholar 

  24. T. E. Ellenberger, C. J. Brandl, K. Struhl, S. C. Harrison, Cell, 1992, 71, 1223–1237.

    Article  CAS  Google Scholar 

  25. T. Toyooka, O. Hisatomi, F. Takahashi, H. Kataoka, M. Terazima, Biophys. J., 2011, 100, 2801–2809.

    Article  CAS  Google Scholar 

  26. O. Hisatomi, K. Takeuchi, K. Zikihara, Y. Ookubo, Y. Nakatani, F. Takahashi, S. Tokutomi, H. Kataoka, Plant Cell Physiol., 2013, 54, 93–106.

    Article  CAS  Google Scholar 

  27. O. Hisatomi, Y. Nakatani, K. Takeuchi, F. Takahashi, H. Kataoka, J. Biol. Chem., 2014, 289, 17379–17391.

    Article  CAS  Google Scholar 

  28. C. Duellberg, M. Trokter, R. Jha, I. Sen, M. O. Steinmetz, T. Surrey, Nat. Cell Biol., 2014, 16, 8 804–8011.

    Article  CAS  Google Scholar 

  29. K. Takeuchi, Y. Nakatani, O. Hisatomi, Open J. Biophys., 2014, 4, 83–91.

    Article  Google Scholar 

  30. W. Liptay, Angew. Chem., Int. Ed., 1969, 8, 177–188.

    Article  CAS  Google Scholar 

  31. A. Möglich, K. Moffat, Photochem. Photobiol. Sci., 2010, 9, 1286–1300.

    Article  Google Scholar 

  32. Y. Nakatani, O. Hisatomi, Biochemistry, 2015, 54, 3302–3313.

    Article  CAS  Google Scholar 

  33. Y. Nihongaki, H. Suzuki, F. Kawano, M. Sato, ACS Chem. Biol., 2014, 9, 617–621.

    Article  CAS  Google Scholar 

  34. L. B. Motta-Mena, A. Reade, M. J. Mallory, S. Glantz, O. D. Weiner, K. W. Lynch, K. H. Gardner, Nat. Chem. Biol., 2014, 10, 196–202.

    Article  CAS  Google Scholar 

  35. F. Kawano, H. Suzuki, A. Furuya, M. Sato, Nat. Commun., 2015, 6, 6256.

    Article  CAS  Google Scholar 

  36. M. Grusch, K. Schelch, R. Riedler, E. Reichhart, C. Differ, W. Berger, A. Ingles-Prieto, H. Janovjak, EMBO J., 2014, 33, 1713–1726.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osamu Hisatomi.

Additional information

Electronic supplementary information (ESI) available.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hisatomi, O., Furuya, K. A light-regulated bZIP module, photozipper, induces the binding of fused proteins to the target DNA sequence in a blue light-dependent manner. Photochem Photobiol Sci 14, 1998–2006 (2015). https://doi.org/10.1039/c5pp00178a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c5pp00178a

Navigation