Skip to main content
Log in

Atomic and molecular analysis highlights the biophysics of unprotonated and protonated retinal in UV and scotopic vision

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

During the photoreaction of rhodopsin, retinal isomerizes, rotating the C11=C12 π-bond from cis to an all-trans configuration. Unprotonated (UR) or protonated (PR) retinal in the Schiff’s base (SB) is related to UV and light vision. Because the UR and PR have important differences in their physicochemical reactivities, we compared the atomic and molecular properties of these molecules using DFT calculations. The C10-C11=C12-C13 dihedral angle was rotated from 0° to 180° in 45° steps, giving five conformers, and the following were calculated from them: atomic orbital (AO) contributions to the HOMO and LUMO, atomic charges, bond length, bond order, HOMO, LUMO, hardness, electronegativity, polarizability, electrostatic potential, UV-vis spectra and dipole moment (DM). Similarly, the following were analyzed: the energy profile, hybridization, pyramidalization and the hydrogen-out-of-plane (HOOP) wagging from the H11-C11=C12-H12 dihedral angle. In addition, retinal with a water H-bond (HR) in the SB was included for comparison. Interestingly, in the PR, C11 and C12 are totally the LUMO and the HOMO, respectively, and have a large electronegativity difference, which predicts an electron jump in these atoms during photoexcitation. At the same time, the PR showed a longer bond length and lower bond order, with a larger DM, lower HOMO-LUMO gap, lower hardness and higher electronegativity. In addition, the AOs of −45° and −90° conformers changed significantly, from pz to py, during the rotation concomitantly with marked hybridization, smooth pyramidalization and lower HOOP activity. Clearly, the atomic and molecular differences between the UR and PR are overwhelming, including the rotational energy profile and light absorption spectra, which indicates that light absorption of UR and PR is already determined by the retinal characteristics of the SB protonation. The HR-model compared with UR shows a lower energy barrier and a discreet bathochromic effect in the UV region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Shichida and T. Matsuyama, Evolution of opsins and phototransduction, Philos. Trans. R. Soc. London, Ser. B, 2009, 364, 2881–2895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. J. McCarren and E. F. DeLong, Proteorhodopsin photosystem gene clusters exhibit co-evolutionary trends and shared ancestry among diverse marine microbial phyla, Environ. Microbiol., 2007, 9, 846–858.

    Article  CAS  PubMed  Google Scholar 

  3. J. L. Spudich, C. S. Yang, K. H. Jung and E. N. Spudich, Retinylidene proteins: structures and functions from archaea to humans, Annu. Rev. Cell Dev. Biol., 2000, 16, 365–392.

    Article  CAS  PubMed  Google Scholar 

  4. J. K. Lanyi, Bacteriorhodopsin, Annu. Rev. Physiol., 2004, 66, 665–688.

    Article  CAS  PubMed  Google Scholar 

  5. K. Palczwski, T. Kumasaka, T. Hori, C. A. Behnke, H. Motoshima, B. A. Fox, I. L. Trong, D. C. Teller, T. Okada, R. E. Stenkamp, M. Yamamoto and M. Miyano, Crystal structure of rhodopsin: A G protein-coupled receptor, Science, 2000, 289, 739–745.

    Article  Google Scholar 

  6. J. A. Gascón, E. M. Sproviero and V. S. Batista, Computational studies of the primary phototransduction event in visual rhodopsin, Acc. Chem. Res., 2006, 39, 184–193.

    Article  PubMed  CAS  Google Scholar 

  7. L. M. Frutos, T. Andruniów, F. Santoro, N. Ferré and M. Olivucci, Tracking the excited-state time evolution of the visual pigment with multiconfigurational quantum chemistry, Proc. Natl. Acad. Sci. U. S. A., 2007, 104, 7764–7769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. R. Send and D. Sundholm, Stairway to the conical intersection: A computational study of the retinal isomerization, J. Phys. Chem. A, 2007, 111, 8766–8773.

    Article  CAS  PubMed  Google Scholar 

  9. A. Yabushita, T. Kobayashi and M. Tsuda, Time-resolved spectroscopy of ultrafast photoisomerization of octopus rhodopsin under photoexcitation, J. Phys. Chem. B, 2012, 116, 1920–1926.

    Article  CAS  PubMed  Google Scholar 

  10. S. Gozem, A. I. Krylov and M. Olivucci, Conical intersection and potential energy surface features of a model retinal chromophore: Comparison of EOM-CC and multireference methods, J. Chem. Theory Comput., 2013, 9, 284–292.

    Article  CAS  PubMed  Google Scholar 

  11. D. Polli, P. Altoe, O. Weingart, K. M. Spillane, C. Manzoni, D. Brida, G. Tomasello, G. Orlandi, P. Kukura, R. A. Mathies, M. Garavelli and G. Cerullo, Conical intersection dynamics of the primary photoisomerization event in vision, Nature, 2010, 467, 440–443.

    Article  CAS  PubMed  Google Scholar 

  12. O. P. Ernst and F. J. Bartl, Active states of rhodopsin, ChemBioChem, 2002, 3, 968–974.

    Article  CAS  PubMed  Google Scholar 

  13. A. V. Struts, G. F. Salgado, K. Martínez-Mayorga and M. F. Brown, Retinal dynamics underlie its switch from inverse agonist to agonist during rhodopsin activation, Nat. Struct. Mol. Biol., 2011, 18, 392–394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. S. Yokoyama, Molecular evolution of vertebrate visual pigments, Prog. Retin. Eye Res., 2000, 19, 385–419.

    Article  CAS  PubMed  Google Scholar 

  15. A. K. Kusnetzow, A. Dukkipati, K. R. Babu, L. Ramos, B. E. Knox and R. R. Birge, Vertebrate ultraviolet visual pigments: Protonation of the retinylidene Schiff base and a counterion switch during photoactivation, Proc. Natl. Acad. Sci. U. S. A., 2004, 101, 941–946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. A. Dukkipati, A. Kusnetzow, K. R. Babu, L. Ramos, D. Singh, B. E. Knox and R. R. Birge, Phototransduction by vertebrate ultraviolet visual pigments: Protonation of the retinylidene Schiff base following photobleaching, Biochemistry, 2002, 41, 9842–9851.

    Article  CAS  PubMed  Google Scholar 

  17. A. Altun, K. Morokuma and S. Yokoyama, H-Bond network around retinal regulates the evolution of ultraviolet and violet vision, ACS Chem. Biol., 2011, 6, 775–780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Y. Shi, F. B. Radlwimmer and S. Yokoyama, Molecular genetics and the evolution of ultraviolet vision in vertebrates, Proc. Natl. Acad. Sci. U. S. A., 2001, 98, 11731–11736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. B. M. Cabrera-Vivas, J. C. Ramírez, L. M. R. Martínez-Aguilera and C. Kubli-Garfias, Theoretical assessment of the mechanism involved in the cholesterol biosynthesis from lanosterol, J. Mol. Struct. (THEOCHEM), 2002, 584, 5–14.

    Article  CAS  Google Scholar 

  20. K. Sharma, R. Vázquez-Ramírez and C. Kubli-Garfias, A theoretical model of the catalytic mechanism of the Δ5-3-ketosteroid isomerase reaction, Steroids, 2006, 71, 549–557.

    Article  CAS  PubMed  Google Scholar 

  21. J. A. Cogordan, M. Mayoral, E. Angeles, R. A. Toscano and R. Martínez, Neuroleptic and antidepressant tricyclic compounds: Theoretical study for predicting their biological activity by semiempirical, density functional and Hartree-Fock methods, Int. J. Quantum Chem., 1999, 71, 415–432.

    Article  CAS  Google Scholar 

  22. G. E. Scuseria and P. Y. Ayala, Linear scaling coupled cluster and perturbation theories in the atomic orbital basis, J. Chem. Phys., 1999, 111, 8330–8343.

    Article  CAS  Google Scholar 

  23. Y. Yang, F. H. Wang and Y. S. Zhou, Density functional calculations of the polarizability and second-order hyperpolarizability of C50Cl10, Phys. Rev., 2005, 71, 13202–13205.

    Article  CAS  Google Scholar 

  24. R. C. Haddon, Comment on the relationship of the pyramidalization angle at a conjugated carbon atom to the sigma bond angles, J. Phys. Chem. A, 2001, 105, 4164–4165.

    Article  CAS  Google Scholar 

  25. O. Weingart, The twisted C11=C12 bond of the rhodopsin chromophores-A photochemical hot spot, J. Am. Chem. Soc., 2007, 129, 10618–10619.

    Article  CAS  PubMed  Google Scholar 

  26. M. Garavelli, F. Bernardi, M. A. Roob and M. Olivucci, Computer simulation of photoinduced molecular motion and reactivity, Int. J. Photoenergy, 2002, 4, 57–68.

    Article  CAS  Google Scholar 

  27. A. Cehovin, H. Mera, J. H. Jensen, K. Stokbro and T. B. Pedersen, Role of the virtual orbitals and HOMO-LUMO gap in mean-field approximations to the conductance of molecular junctions, Phys. Rev. B: Condens. Matter, 2008, 77, 195432.

    Article  CAS  Google Scholar 

  28. B.-G. Kim, X. Ma, C. Chen, Y. Ie, E. W. Coir, H. Hashemi, Y. Aso, P. F. Green, J. Kieffer and J. Kim, Energy level modulation of HOMO, LUMO, and band-gap in conjugated polymers for organic photovoltaic applications, Adv. Funct. Mater., 2013, 23, 439–445.

    Article  CAS  Google Scholar 

  29. F. Plasser and H. Lischka, Analysis of excitonic and charge transfer interactions from quantum chemical calculations, J. Chem. Theor. Comput., 2012, 8, 2777–2789.

    Article  CAS  Google Scholar 

  30. F. Plasser and H. Lischka, Electronic excitation and structural relaxation of the adenine dinucleotide in gas phase and solution, Photochem. Photobiol. Sci., 2013, 12, 1440–1452.

    Article  CAS  PubMed  Google Scholar 

  31. B. Honig, A. D. Greenberg, U. Dinur and T. G. Ebrey, Visual-pigment spectra: Implications of the protonation of the retinal Schiff base, Biochemistry, 1976, 15, 4593–4599.

    Article  CAS  PubMed  Google Scholar 

  32. R. A. Poirier, A. Yadav and P. R. Surján, Effect of protonation on the ground state properties of retinal analogs: An ab initio study, J. Chem., 1987, 65, 892–897.

    CAS  Google Scholar 

  33. R. G. Parr and R. G. Pearson, Absolute hardness: Companion parameter to absolute electronegativity, J. Am. Chem. Soc., 1983, 105, 7512–7516.

    Article  CAS  Google Scholar 

  34. J. E. Gready, The value of the π-bond order-bond length relationship in geometry prediction and chemical bonding interpretation, J. Comput. Chem., 1984, 5, 411–426.

    Article  CAS  Google Scholar 

  35. P. Politzer and S. Ranganathan, Bond-order-bond-energy correlations, Chem. Phys. Lett., 1986, 124, 527–530.

    Article  CAS  Google Scholar 

  36. C. Kubli-Garfias, K. Salazar-Salinas, E. C. Perez-Angel and J. M. Seminario, Light activation of the isomerization and deprotonation of the protonated Schiff base retinal, J. Mol. Model, 2011, 17, 2539–2547.

    Article  CAS  PubMed  Google Scholar 

  37. G. Lendvay, Characterization of the progress of chemical reactions by ab initio bond orders, J. Phys. Chem., 1994, 98, 6098–6104.

    Article  CAS  Google Scholar 

  38. R. Ponec, G. Yuzhakov and D. L. Cooper, Electron reorganization in chemical reactions. Structural changes from the analysis of bond order profiles, J. Phys. Chem. A, 2003, 107, 2100–2105.

    Article  CAS  Google Scholar 

  39. V. R. Kaila, R. Send and D. Sundholm, The effect of protein environment on photoexcitation properties of retinal, J. Phys. Chem. B, 2012, 116, 2249–2258.

    Article  CAS  PubMed  Google Scholar 

  40. K. Bravaya, A. Bochenkova, A. Granovsky and A. Nemukhin, An opsin shift in rhodopsin: Retinal S0-S1 excitation in protein, in solution, and in the gas phase, J. Am. Chem. Soc., 2007, 129, 13035–13042.

    Article  CAS  PubMed  Google Scholar 

  41. I. Schapiro, M. N. Ryazantsev, L. M. Frutos, N. Ferré, R. Lindh and M. Olivucci, The ultrafast photoisomerizations of rhodopsin and bathorhodopsin are modulated by bond length alternation and HOOP driven electronic effects, J. Am. Chem. Soc., 2011, 133, 3354–3364.

    Article  CAS  PubMed  Google Scholar 

  42. P. Kukura, D. W. McCamant, S. Yoon, D. B. Wandschneider and R. A. Mathies, Structural observation of the primary isomerization in vision with femtosecond-stimulated raman, Science, 2005, 310, 1006–1009.

    Article  CAS  PubMed  Google Scholar 

  43. N. Klaffki, O. Weingart, M. Garavelli and E. Spohr, Sampling excited state dynamics: Influence of HOOP mode excitations in a retinal model, Phys. Chem. Chem. Phys., 2012, 14, 14299–14305.

    Article  CAS  PubMed  Google Scholar 

  44. W. T. Borden, Pyramidalized alkenes, Chem. Rev., 1989, 89, 1095–1109.

    Article  CAS  Google Scholar 

  45. S. Vázquez and P. Camps, Chemistry of pyramidalized alkenes, Tetrahedron, 2005, 61, 5147–5208.

    Article  CAS  Google Scholar 

  46. L. S. Ramos, M. H. Chen, B. E. Knox and R. R. Birge, Regulation of photoactivation in vertebrate short wavelength visual pigments: Protonation of the retinylidene Schiff base and a counterion switch, Biochemistry, 2007, 46, 5330–5340.

    Article  CAS  PubMed  Google Scholar 

  47. K. Tsutsui, H. Imai and Y. Shichida, E113 is required for the efficient photoisomerization of the unprotonated chromophore in a UV-absorbing visual pigment, Biochemistry, 2008, 47, 10829–10833.

    Article  CAS  PubMed  Google Scholar 

  48. R. S. Becker and K. Freedman, A comprehensive investigation of the mechanism and photophysics of isomerization of a protonated and unprotonated Schiff base of 11-cis-retinal, J. Am. Chem. Soc., 1985, 107, 1477–1485.

    Article  CAS  Google Scholar 

  49. J. E. Kim, M. J. Tauber and R. A. Mathies, Wavelength dependent cis-trans isomerization in vision, Biochemistry, 2001, 40, 13774–13778.

    Article  CAS  PubMed  Google Scholar 

  50. K. Tsutsui, H. Imai and Y. Shichida, Photoisomerization efficiency in UV-absorbing visual pigments: Protein-directed isomerization of an unprotonated retinal Schiff base, Biochemistry, 2007, 46, 6437–6445.

    Article  CAS  PubMed  Google Scholar 

  51. J. Li, P. C. Edwards, M. Burghammer, C. Villa and G. F. Schertler, Structure of bovine rhodopsin in a trigonal crystal form, J. Mol. Biol., 2004, 343, 1409–1438.

    Article  CAS  PubMed  Google Scholar 

  52. J. Liu, M. Y. Liu, J. B. Nguyen, A. Bhagat, V. Mooney and E. C. Yan, Thermal properties of rhodopsin, insight into the molecular mechanism of dim-light vision, J. Biol. Chem., 2011, 286, 27622–27629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. G. Tomasello, G. Olaso-González, P. Altoè, M. Stenta, L. Serrano-Andrés, M. Merchán, G. Orlandi, A. Bottoni and M. Garavelli, Electrostatic control of the photoisomerization efficiency and optical properties in visual pigments: On the role of counterion quenching, J. Am. Chem. Soc., 2009, 131, 5172–5186.

    Article  CAS  PubMed  Google Scholar 

  54. C. Kubli-Garfias and R. Vázquez-Ramírez, Free energy of cis and all-trans retinal conformers in the rhodopsin binding pocket, presented at 3rd Latin-American Congress of Photocatalysis, San Luis Potosí, México, October, 2014.

    Google Scholar 

  55. F. J. Bartl and R. Vogel, Structural and functional properties of metarhodopsin III: Recent spectroscopic studies on deactivation pathways of rhodopsin, Phys. Chem. Chem. Phys., 2007, 9, 1648–1658.

    Article  CAS  PubMed  Google Scholar 

  56. M. Heck, S. A. Schädel, D. Maretzki, F. J. Bartl, E. Ritter, K. Palczewski and K. P. Hofmann, Signaling states of rhodopsin formation of the storage form, metarhodopsin III, from active metarhodopsin II, J. Biol. Chem., 2003, 278, 3162–3169.

    Article  CAS  PubMed  Google Scholar 

  57. K. Zimmermann, E. Ritter, F. J. Bartl, K. P. Hofmann and M. H. Heck, Interaction with transducin depletes metarhodopsin III: A regulated retinal storage in visual signal transduction?, J. Biol. Chem., 2004, 279, 48112–48119.

    Article  CAS  PubMed  Google Scholar 

  58. M. H. Chen, C. Kuemmel, R. R. Birge and B. E. Knox, Rapid release of retinal from a cone visual pigment following photoactivation, Biochemistry, 2012, 51, 4117–4125.

    Article  CAS  PubMed  Google Scholar 

  59. T. Wolter, K. Welke, P. Phatak, A. N. Bondar and M. Elstner, Excitation energies of a water-bridged twisted retinal structure in the bacteriorhodopsin proton pump: A theoretical investigation, Phys. Chem. Chem. Phys., 2013, 15, 12582–12590.

    Article  CAS  PubMed  Google Scholar 

  60. H. Abramczyk, Femtosecond primary events in bacteriorhodopsin and its retinal modified analogs: Revision of commonly accepted interpretation of electronic spectra of transient intermediates in the bacteriorhodopsin photocycle, J. Chem. Phys., 2004, 120, 11120–11132.

    Article  CAS  PubMed  Google Scholar 

  61. P. Tavan, K. Schulten and D. Oesterhelt, The effect of protonation and electrical interactions on the stereochemistry of retinal Schiff bases, Biophys. J., 1985, 47, 415–430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. D. W. McCamant, P. Kukura and R. A. Mathies, Femtosecond stimulated Raman study of excited-state evolution in bacteriorhodopsin, local-access model for proton transfer in bacteriorhodopsin, J. Phys. Chem. B, 2005, 109, 10449–10457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Kubli-Garfias.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kubli-Garfias, C., Vázquez-Ramírez, R., Cabrera-Vivas, B.M. et al. Atomic and molecular analysis highlights the biophysics of unprotonated and protonated retinal in UV and scotopic vision. Photochem Photobiol Sci 14, 1660–1672 (2015). https://doi.org/10.1039/c5pp00091b

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c5pp00091b

Navigation