Skip to main content
Log in

Photochemistry of N-(selenoalkyl)-phthalimides. Formation of N, Se-heterocyclic systems

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

A variety of N-(selenomethyl)alkyl-phthalimides (alkyl =–(CH2)n–; n = 2–5, 1a, b, d, e) and N-(selenobenzyl)propyl phthalimide (1c) were synthesized and their photochemistry was studied at λ = 300 nm. Steady-state photolysis and laser time-resolved spectroscopy studies confirmed that these reactions proceeded by direct or acetone-sensitized excitation followed by intramolecular electron transfer (ET) between Se atom and the phthalimide moiety. Two main pathways are possible after ET: proton transfer to the ketyl radical anion from the CH3Se+˙ or the–CH2Se+˙–moieties, yielding the corresponding biradicals. Collapse of these biradicals yields cyclization products with the respective endo or exo selenium-containing heterocycles. Competition between both proton transfer processes depends on the chain length of the alkyl spacer between the phthalimide and Se groups as well as the size of the cycle being formed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. J. Kovarnos, in Fundamentals of Photoinduced Electron Transfer, VCH Pub., New York, 1993.

    Google Scholar 

  2. A. G. Griesbeck and J. Mattay, in Synthetic Organic Photochemistry, Molecular and Supramolecular Photochemistry, Marcel-Dekker, New York, 2005, vol. 12.

  3. R. A. Rossi, A. B. Peñéñory, Strategies in synthetic radical organic chemistry. Recent advances on cyclization and SRN1 reactions, Curr. Org. Synth., 2006, 3, 121–158.

    Article  CAS  Google Scholar 

  4. N. Hoffmann, Efficient photochemical electron transfer sensitization of homogeneous organic reactions, J. Photochem. Photobiol., C, 2008, 9, 43–60.

    Article  CAS  Google Scholar 

  5. M. Oelgemöeller and A. G. Griesbeck, Photoinduced electron transfer chemistry of phthalimides: an efficient tool for C–C-bond formation, J. Photochem. Photobiol., C, 2002, 3, 109–127.

    Article  Google Scholar 

  6. A. G. Griesbeck, N. Hoffmann, K.-D. Warzecha, Photoinduced-Electron-Transfer Chemistry: from studies on PET processes to applications in natural product synthesis, Acc. Chem. Res., 2007, 40, 128–140.

    Article  PubMed  CAS  Google Scholar 

  7. Y. Kanaoka, Photoreactions of cyclic imides. Examples of synthetic organic photochemistry, Acc. Chem. Res., 1978, 11, 407–413.

    Article  CAS  Google Scholar 

  8. U. C. Yoon and P. S. Mariano, The synthetic potential of phthalimide SET photochemistry, Acc. Chem. Res., 2001, 34, 523–533.

    Article  PubMed  CAS  Google Scholar 

  9. M. Horvat, K. Mlinarić-Majerski, N. Basarić, Photochemistry of N-alkyl and N-aryl substituted phthalimides: H-abstractions, Single Electron Transfer and cycloadditions, Croat. Chem. Acta, 2010, 83, 179–188.

    CAS  Google Scholar 

  10. Y. Sato, H. Nakai, M. Wada, T. Mizoguchi, Y. Hatanaka, Y. Migita and Y. Kanaoka, Photochemistry of the phthalimide system, 37. Thiazacycloalkanols by photocyclization of S-substituted N-(thioalkyl)phthalimides, Liebigs Ann. Chem., 1985, 1099–1118.

    Google Scholar 

  11. Y. Hatanaka, Y. Sato, H. Nakai, M. Wada, T. Mizoguchi and Y. Kanaoka, Photochemistry of the phthalimide system, 44. Photoinduced reactions, 122. Regioselective remote photocyclization: examples of a photochemical macrocyclic synthesis with sulfide-containing phthalimides, Liebigs Ann. Chem., 1992, 1113–1123.

    Google Scholar 

  12. Y. Sato, H. Nakai, M. Wada, T. Mizoguchi, Y. Hatanaka and Y. Kanaoka, Application of remote photocyclization with a pair system of phthalimide and methylthio groups. A photochemical synthesis of cyclic peptide models, Chem. Pharm. Bull., 1992, 40, 3174–3180.

    Article  CAS  Google Scholar 

  13. Y. Sato, H. Nakai, T. Mizoguchi and Y. Kanaoka, A synthetic approach to cyclic peptide models by regioselective remote photocyclization of sulfide-containing phthalimides, Tetrahedron Lett., 1976, 17, 1889–1890.

    Article  Google Scholar 

  14. Y. Sato, H. Nakai, T. Mizoguchi, Y. Hatanaka and Y. Kanaoka, Photochemistry of the phthalimide system. VII. Regioselective remote photocyclization. Examples of a photochemical macrocyclic synthesis with sulfide-containing phthalimides, J. Am. Chem. Soc., 1976, 98, 2349–2351.

    Article  CAS  Google Scholar 

  15. Y. Sato, H. Nakai, H. Ogiwara, T. Mizoguchi, Y. Migita and Y. Kanaoka, Photochemistry of the phthalimide system. V photocyclization of the phthalimides with a sulfide chain: synthesis of aza-cyclols by δ, ε, and ς hydrogen abstraction, Tetrahedron Lett., 1973, 14, 4565–4568.

    Article  Google Scholar 

  16. Y. Sato, H. Nakai, M. Wada, H. Ogiwara, T. Mizoguchi, Y. Migita, Y. Hatanaka and Y. Kanaoka, Photocyclization of N-alkoxyalkylphthalimides with favored δ-hydrogen abstraction: syntheses of oxazolo [4, 3-α] isoindoles and oxazolo [4, 3-α]-isoindole-1-spiro-1′-cycloalkane ring systems, Chem. Pharm. Bull., 1982, 30, 1639–1645.

    Article  CAS  Google Scholar 

  17. K. Maruyama, Y. Kubo, M. Machida, K. Oda, Y. Kanaoka and K. Fukuyama, Photochemical cyclization of N-2-alkenyl- and N-3-alkenylphthalimides, J. Org. Chem., 1978, 43, 2303–2304.

    Article  CAS  Google Scholar 

  18. K. Maruyarna and Y. Kubo, Solvent-incorporated medium to macrocyclic compounds by the photochemical cyclization of N-alkenylphthalimides, J. Am. Chem. Soc., 1978, 100, 7772–7773.

    Article  Google Scholar 

  19. K. Maruyama and Y. Kubo, Photochemistry of N-(2-alkenyl)phthalimides. Photoinduced cyclization and elimination reaction, J. Org. Chem., 1981, 46, 3612–3622.

    Article  CAS  Google Scholar 

  20. P. H. Mazzocchi and G. J. Fritz, Photolysis of N-(2-methyl-2-propenyl)phthalimide in methanol. Evidence supporting radical-radical coupling of a photochemically generated radical ion pair, J. Am. Chem. Soc., 1986, 108, 5362–5364.

    Article  CAS  Google Scholar 

  21. A. G. Griesbeck, A. Henz, J. Ptatschek, V. Hirt, T. Engel, D. Löffler and F. W. Schneider, Photochemistry of N-phthaloyl derivatives of electron-donor-substituted amino acids, Tetrahedron, 1994, 50, 701–714.

    Article  CAS  Google Scholar 

  22. Y. Kanaoka; and Y. Migita, Photocyclization of N-aralkylphthalimides: An example of possible synthetic control in a heterocyclic series, Tetrahedron Lett., 1974, 42, 3693–3696.

    Article  Google Scholar 

  23. A. G. Griesbeck, A. Henz, W. Kramer, J. Lex, F. Nerowski, M. Oelgemöller, 70. Synthesis of medium- and large-Ring compounds initiated by photochemical decarboxylation of ω-phthalimidoalkanoates, Helv. Chim. Acta, 1997, 80, 912–933.

    Article  CAS  Google Scholar 

  24. A. G. Griesbeck, T. Heinrich, M. Oelgemöller, A. Molis and A. Heidtmann, Synthesis of cyclic peptides by photochemical decarboxylation of N-phthaloyl peptides in aqueous solution, Helv. Chim. Acta, 2002, 85, 4561–4578.

    Article  CAS  Google Scholar 

  25. A. G. Griesbeck, T. Heinricht, M. Oelgemöller, J. Lex and A. Molis, A photochemical route for efficient cyclopeptide formation with a minimum of protection and activation chemistry, J. Am. Chem. Soc., 2002, 124, 10972–10973.

    Article  PubMed  CAS  Google Scholar 

  26. A. G. Griesbeck, W. Kramer, M. Oelgemöller, Synthetic applications of photoinduced electron transfer decarboxylation reactions, Synlett, 1999, 1169–1178.

    Google Scholar 

  27. A. G. Griesbeck, F. Nerowski and J. Lex, Decarboxylative photocyclization: synthesis of benzopyrrolizidines and macrocyclic lactones, J. Org. Chem., 1999, 64, 5213–5217.

    Article  PubMed  CAS  Google Scholar 

  28. A. G. Griesbeck, W. Kramer, M. Oelgemöller, Photoinduced decarboxylation reactions, Green Chem., 1999, 1, 205–207.

    Article  CAS  Google Scholar 

  29. A. G. Griesbeck, M. Oelgemöller, J. Lex, A. Haeuseler and M. Schmittel, Synthesis of sulfur-containing tricyclic ring systems by means of photoinduced decarboxylative cyclizations, Eur. J. Org. Chem., 2001, 1831–1843.

    Google Scholar 

  30. U. C. Yoon, Y. X. Jin, S. W. Oh, D. W. Cho, K. N. Park and P. S. Mariano, Comparison of photomacrocyclization reactions of trimethylsilyl- and tributylstannyl-terminated phthalimido- and maleimido-polyethers, J. Photochem. Photobiol., A, 2002, 150, 77–84.

    Article  CAS  Google Scholar 

  31. D. W. Cho, J. H. Choi, S. W. Oh, C. Quan, U. C. Yoon, R. Wang, S. Yang and P. S. Mariano, Single electron transfer-promoted photocyclization reactions of linked acceptor–polydonor systems: effects of chain length and type on the efficiencies of macrocyclic ring-forming photoreactions of tethered α-silyl ether phthalimide substrates, J. Am. Chem. Soc., 2008, 130, 2276–2284.

    Article  PubMed  CAS  Google Scholar 

  32. C. W. Nogueira, G. Zeni and J. B. T. Rocha, Organoselenium and organotellurium compounds: toxicology and pharmacology, Chem. Rev., 2004, 104, 6255–6285.

    Article  PubMed  CAS  Google Scholar 

  33. A. J. Mukherjee, S. S. Zade, H. B. Singh and R. B. Sunoj, Organoselenium chemistry: role of intramolecular interactions, Chem. Rev., 2010, 110, 4357–4416.

    Article  PubMed  CAS  Google Scholar 

  34. S. Hazebrouck, L. Camoin, Z. Faltin, A. D. Strosberg and Y. Eshdat, Substituting selenocysteine for catalytic cysteine 41 enhances enzymatic activity of plant phospholipid hydroperoxide glutathione peroxidase expressed in Escherichia coli, J. Biol. Chem., 2000, 275, 28715–28721.

    Article  PubMed  CAS  Google Scholar 

  35. Y. Eshdat, D. Holland, Z. Faltin, G. Ben-Hayyim, Plant glutathione peroxidases, Physiol. Plant., 1997, 100, 234–240.

    Article  CAS  Google Scholar 

  36. K. C. Nicolaou and N. A. Petasi, in Selenium in Natural Products Synthesis, CIS, Philadelphia, 1984.

    Google Scholar 

  37. C. Paulmier, in Selenium Reagents and Intermediates in Organic Synthesis, Pergamon, Oxford, 1986.

    Google Scholar 

  38. S. Patai and Z. Rappoport, in The Chemistry of Organic Selenium and Tellurium Compounds, Wiley, New York, 1986, vol. 1.

  39. D. L. Klayman and W. H. H. Günther, in Organic Selenium Compounds: Their Chemistry and Biology, Wiley Interscience, New York, 1973.

    Google Scholar 

  40. R. J. Shamberger, in Biochemistry of Selenium, Plenum Press, New York, 1983.

    Book  Google Scholar 

  41. V. A. Potapov, M. V. Musalov and S. V. Amosova, Reactions of selenium dichloride and dibromide with unsaturated ethers. Annulation of 2,3-dihydro-1,4-oxaselenine to the benzene ring, Tetrahedron Lett., 2011, 52, 4606–4610.

    Article  CAS  Google Scholar 

  42. F. V. Singh and T. Wirth, in PATAI’S Chemistry of Functional Groups; The Chemistry of Organic Selenium and Tellurium Compounds, John Wiley & Sons, Ltd, 2011.

    Google Scholar 

  43. K. C. Nicolaou, D. A. Claremon, W. E. Barnette and S. P. Seitz, N-Phenylselenophthalimide (N-PSP) and N-phenylselenosuccinimide (N-PSS). Two versatile carriers of the phenylseleno group. Oxyselenation of olefins and a selenium-based macrolide synthesis, J. Am. Chem. Soc., 1979, 101, 3704–3706.

    Article  CAS  Google Scholar 

  44. A. Temperini and L. Minuti, N-(phenylselenomethyl)phthalimide as new reagent for mild protection of alcohols as Pim-ethers, Tetrahedron Lett., 2012, 53, 2709–2711.

    Article  CAS  Google Scholar 

  45. B. S. Furniss, A. J. Hannaford, P. W. G. Smith and A. R. Tatchell, in Vogel’s: Texbook of Practical Organic Chemistry, John Wiley & Sons, Inc., New York, 5th edn, 1989, p. 780.

    Google Scholar 

  46. N. L. Drake and J. A. Garman, Some N1-(6-methoxy-8-quinolylaminoalkyl)-guanidines, J. Am. Chem. Soc., 1949, 71, 2425–2427.

    Article  CAS  Google Scholar 

  47. The generation in situ of the alkaneselenate ions by reduction of dialkyldiselenide with Na in NH3(l) can be replaced by reduction with NaBH4 in tert-BuOH (A. B. Peñéñory, R. A. Rossi, Photostimulated reactions of haloarenes with benzeneselenate ions by the SRN1 mechanism. Competition between electron transfer and fragmentation of radical anion intermediates, J. Phys. Org. Chem., 1990, 3, 266–272). With this methodology, tert-BuOH must be distilled off and subsequent addition of DMF allows the substitution reaction with the bromo phthalimide derivative.

  48. H. Komatsu, M. Iwaoka and S. Tomoda, Intramolecular non-bonded interaction between selenium and oxygen as revealed by 17O and 77Se NMR spectroscopy and natural bond orbital analysis, Chem. Commun., 1999, 205–206.

    Google Scholar 

  49. M. Iwaoka, H. Komatsu, T. Katsuda and S. Tomoda, Nature of nonbonded Se⋯O interactions characterized by 17O NMR spectroscopy and NBO and AIM analyses, J. Am. Chem. Soc., 2004, 126, 5309–5317.

    Article  PubMed  CAS  Google Scholar 

  50. G. Pandey, B. B. V. S. Sekhar and U. T. Bhalerao, Photoinduced single electron transfer initiated heterolytic carbon-selenium bond dissociation. Sequential one-pot selenenylation and deselenenylation reaction, J. Am. Chem. Soc., 1990, 112, 5650–5651.

    Article  CAS  Google Scholar 

  51. G. Pandey and S. R. Gadre, Generation and mesolytic dynamics of organoselenane and selenosilane radical ions: development of mechanistically interesting and synthetically useful chemistry, Acc. Chem. Res., 2004, 37, 201–210.

    Article  PubMed  CAS  Google Scholar 

  52. G. Pandey, R. Sochanchingwung, S. Kant Tiwari, Diastereoselective oxyselenylation of 1,n-diolefins utilizing PET generated [PhSeSePh]+˙ as an electrophilic species: An efficient and general strategy for the synthesis of α,α′-trans-dialkyl cyclic ethers, J. Indian Inst. Sci., 2001, 81, 87–93.

    CAS  Google Scholar 

  53. S. Hu and D. C. Neckers, Photochemical reactions of sulfide-containing alkyl phenylglyoxylates, Tetrahedron, 1997, 53, 7165–7180.

    Article  CAS  Google Scholar 

  54. A. G. Griesbeck, J. H. Mauder, I. Müller, E.-M. Peters, K. Peters, H. G. von Schnering, Photochemistry of N-phthaloyl derivatives of methionine, Tetrahedron Lett., 1993, 34, 453–456.

    Article  CAS  Google Scholar 

  55. M. Montalti, A. Credi, L. Prodi and M. T. Gandolfi, in Handbook of Photochemistry, CRC Press Taylor & Francis Group, New York, 3rd edn, 2006.

    Book  Google Scholar 

  56. H. Göner, A. G. Griesbeck, T. Heinrich, W. Kramer, M. Oelgemöller, Time-resolved spectroscopy of sulfur- and carboxy-substituted N-alkylphthalimides, Chem.–Eur. J., 2001, 7, 1530–1538.

    Article  Google Scholar 

  57. A. G. Griesbeck, H. Görner, Laser flash photolysis study of N-alkylated phthalimides, J. Photochem. Photobiol., A, 1999, 129, 111–119, and reference therein.

    Article  CAS  Google Scholar 

  58. R. Pérez-Ruiz, S. Gil and M. A. Miranda, Stereodifferentiation in the photochemical cycloreversion of diastereomeric methoxynaphthalene-oxetane dyads, J. Org. Chem., 2005, 70, 1376–1381.

    Article  PubMed  CAS  Google Scholar 

  59. D. Rehm and A. Weller, Kinetics of fluorescence quenching by electron and H-atom transfer, Isr. J. Chem., 1970, 8, 259–271.

    Article  CAS  Google Scholar 

  60. G. Pandey, B. B. V. S. Sekhar, Photoinduced electron transfer initiated activation of organoselenium substrates as carbocation equivalents: sequential one-pot selenylation and deselenylation reaction, J. Org. Chem., 1994, 59, 7367–7372.

    Article  CAS  Google Scholar 

  61. D. W. Leedy and D. L. Muck, Cathodic reduction of phthalimide systems in nonaqueous solutions, J. Am. Chem. Soc., 1971, 93, 4264–4270.

    Article  CAS  Google Scholar 

  62. K.-D. Warzecha, H. Görner and A. G. Griesbeck, Photoinduced decarboxylative benzylation of phthalimide triplets with phenyl acetates: a mechanistic study, J. Phys. Chem. A, 2006, 110, 3356–3363.

    Article  PubMed  CAS  Google Scholar 

  63. V. Wintgens, P. Valat, J. Kossanyi, L. Biczok, A. Demeter and T. Berces, Spectroscopic properties of aromatic dicarboximides. Part1.-N-H and N-methyl-substituted naphthalimides, J. Chem. Soc., Faraday Trans., 1994, 90, 411–421.

    Article  CAS  Google Scholar 

  64. A. G. Griesbeck, J. Hirt, K. Peters, E.-M. Peters, H. G. von Schnering, Photochemistry of N-phthaloylcysteine derivatives: multiplicity-directed regioselective CH activation, Chem.–Eur. J., 1996, 2, 1388–1394.

    Article  CAS  Google Scholar 

  65. A. G. Griesbeck, M. Oelgemöller and J. Lex, Photochemistry of MTM- and MTE-esters of ω-phthalimido carboxylic acids: macrocyclization versus deprotection, J. Org. Chem., 2000, 65, 9028–9032.

    Article  PubMed  CAS  Google Scholar 

  66. O. Shvydkiv, K. Nolan, M. Oelgemöller, Microphotochemistry: 4,4′-dimethoxybenzophenone mediated photodecarboxylation reactions involving phthalimides, Beilstein J. Org. Chem., 2011, 7, 1055–1063.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. O. Shvydkiv, S. Gallagher, K. Nolan, M. Oelgemöller, From conventional to microphotochemistry: photodecarboxylation reactions involving phthalimides, Org. Lett., 2010, 12, 5170–5173.

    Article  PubMed  CAS  Google Scholar 

  68. R. Grigg, V. Sridharan, P. Stevenson, S. Sukirthalingam and T. Worakun, The synthesis of fused ring nitrogen heterocycles via regiospecific intramolecular Heck reactions, Tetrahedron, 1990, 46, 4003–4018.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juan E. Argüello or Alicia B. Peñéñory.

Additional information

Electronic supplementary information (ESI) available: Spectra (1H and 13C NMR) for all the substrates 1a-e, and products 2a, 2b, 2e, 3b, and 3d. See DOI: 10.1039/c4pp00452c

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oksdath-Mansilla, G., Heredia, A.A., Argüello, J.E. et al. Photochemistry of N-(selenoalkyl)-phthalimides. Formation of N, Se-heterocyclic systems. Photochem Photobiol Sci 14, 726–736 (2015). https://doi.org/10.1039/c4pp00452c

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c4pp00452c

Navigation