Skip to main content
Log in

Modeling of degradation kinetic and toxicity evaluation of herbicides mixtures in water using the UV/H2O2 process

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The UV/H2O2 process was applied to the treatment of different mixtures of herbicides in water. Glyphosate, the herbicide most used in the world, was mixed with other hormonal herbicides with residual activity as 2,4-D and dicamba. The main goals of the study were to develop a kinetic model for interpreting the simultaneous oxidation of two mixtures (glyphosate plus 2,4-D and glyphosate plus dicamba). The model is based on a complete reaction mechanism, which comprises hydrogen peroxide photolysis and decomposition of both herbicides in each mixture studied. It takes into account the effect of non-uniform distribution of the local rate of absorbed photons. Good agreement of experimental data and the model is achieved in spite of differences in the reactivity between glyphosate and 2,4-D (or dicamba). Toxicity assays (employing Vibrio fischeri) were also performed, indicating that the toxicity of the mixture of glyphosate and 2,4-D was significantly reduced after the treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Perez-Jones, K. W. Park, N. Polge, J. Colquhoun, C. A. Mallory-Smith Investigating the mechanisms of glyphosate resistance in Lolium multiflorum Planta, 2007 226 395–404

    Article  CAS  PubMed  Google Scholar 

  2. M. Yanniccari, C. Istilart, D. O. Giménez and A. M., Castro, Glyphosate resistance in perennial ryegrass (Lolium perenne L.) from Argentina Crop Protection, 2012 32 12–16

    Article  CAS  Google Scholar 

  3. R. Binimelis, W. Pengue and I., Monterroso, “Transgenic treadmill”: Responses to the emergence and spread of glyphosate-resistant johnsongrass in Argentina Geoforum, 2009 40 623–633

    Article  Google Scholar 

  4. A. J. Diggle, P. B. Neve and F. P., Smith, Herbicides used in combination can reduce the probability of herbicide resistance in finite weed populations Weed Res., 2003 43 371–382

    Article  Google Scholar 

  5. C. L. Stewart, R. E. Nurse, L. L. Van Eerd, R. J. Vyn and P. H., Sikkema, Weed control, environmental impact, and economics of weed management strategies in glyphosate-resistant soybean Weed Technol., 2011 25 4 535–541

    Article  CAS  Google Scholar 

  6. N. Soltani, C. Shropshire and P., Sikkema, Sensitivity of winter wheat to preplant and preemergence glyphosate tankmixes Crop Protection, 2009 28 449–452

    Article  CAS  Google Scholar 

  7. J. R. Miesel, M. J. Renz, J. E. Doll and R. D., Jackson, Effectiveness of weed management methods in establishment of switchgrass and a native species mixture for biofuels in Wisconsin Biomass Bioenergy, 2012 36 121–131

    Article  CAS  Google Scholar 

  8. K. Ikehata, M. Gamal El-Din Aqueous pesticide degradation by hydrogen peroxide/ultraviolet irradiation and Fenton-type advanced oxidation processes: a review J. Environ. Eng. Sci., 2006 5 81–135

    Article  CAS  Google Scholar 

  9. P. Chelme-Ayala, M. Gamal El-Din and D., Smith, Kinetics and mechanism of the degradation of two pesticides in aqueous solutions by ozonation Chemosphere, 2010 78 557–562

    Article  CAS  PubMed  Google Scholar 

  10. R. Zabar, T. Komel, J. Fabjan, M. Bavcon Kralj and P., Trebse, Photocatalytic degradation with immobilized TiO2 of three selected neonicotinoid insecticides: Imidacloprid, thiamethoxam and clothianidin Chemosphere, 2012 89 293–301

    Article  CAS  PubMed  Google Scholar 

  11. J. Khan, X. He, N. Shah, H. Khan, E. Hapeshi, D. Fatta-Kassinos and D., Dionysiou, Kinetic and mechanism investigation on the photochemical degradation of atrazine with activated H2O2, S2O82− and HSO5Chem. Eng. J., 2014 252 393–403

    Article  CAS  Google Scholar 

  12. A. Manassero, C. Passalia, A. Negro, A. Cassano and C., Zalazar, Glyphosate degradation in water employing the H2O2/UVC process Water Res., 2010 44 3875–3882

    Article  CAS  PubMed  Google Scholar 

  13. C. Liao and M., Gurol, Chemical oxidation by photolytic decomposition of hydrogen peroxide Environ. Sci. Technol., 1995 29 3007–3014

    Article  CAS  PubMed  Google Scholar 

  14. W. Glaze, Y. Lay and J. W., Kang, Advanced Oxidation Processes. A kinetic Model for the Oxidation of 1,2-Dibromo-3-chloropropane in Water by the Combination of Hydrogen Peroxide and UV Radiation Ind. Eng. Chem., 1995 34 2314–2323

    Article  CAS  Google Scholar 

  15. M. Stefan, A. Hoy and J., Bolton, Kinetics and mechanism of the degradation and mineralization of acetone in dilute aqueous solution sensitized by the UV photolysis of hydrogen peroxide Environ. Sci. Technol., 1996 30 2382–2390

    Article  CAS  Google Scholar 

  16. J. C. Crittenden, H. Shumin, D. W. Hand and S. A., Green, A kinetic model for H2O2/UV process in a completely mixed batch reactor Water Res., 1999 33 2315–2328

    Article  CAS  Google Scholar 

  17. W. Song, V. Ravindran and M., Pirbazari, Process optimization using a kinetic model for the ultraviolet radiation-hydrogen peroxide decomposition of natural and synthetic organic compounds in groundwater Chem. Eng. Sci., 2008 63 3249–3270

    Article  CAS  Google Scholar 

  18. M. Chang, C. Chung, J. Chern and T., Chen, Dye decomposition kinetics by UV/H2O2: Initial rate analysis by effective kinetic modeling methodology Chem. Eng. Sci., 2010 65 135–140

    Article  CAS  Google Scholar 

  19. P. Kusic, D. Juretic, N. Koprivanac, V. Marin, A. Loncaric Bonzic Photooxidation processes for an azo dye in aqueous media: Modeling of degradation kinetic and ecological parameters evaluation J. Hazard. Mater., 2011 185 1558–1568

    Article  CAS  PubMed  Google Scholar 

  20. Y. Zhu, F. Zhang, C. Tong and W., Liu, Determination of glyphosate by ion chromatography J. Chromatogr., A, 1999 850 297–301

    Article  CAS  Google Scholar 

  21. W. Coonick and J., Simoneaux, Determination of (2,4-dichlorophenoxy) acetic acid and 2,6-dichlorobenzonitrile in water by high-performance liquid chromatography J. Agric. Food Chem., 1982 30 258–260

    Article  Google Scholar 

  22. A. Allen, C. Hochanadel, J. Ghormley and T., Davis, Decomposition of water and aqueous solutions under mixed fast neutron and gamma radiation J. Phys. Chem., 1952 56 575–586

    Article  Google Scholar 

  23. ASTM D5660-96(2004), Standard Test Method for Assessing the Microbial Detoxification of Chemically Contaminated Water and Soil Using a Toxicity Test with a Luminescent Marine Bacterium, ASTM International, West Conshohocken, PA, 2004, DOI:10.1520/D5660-96R04, http://www.astm.org

    Google Scholar 

  24. M. Labas Zalazar, R. Brandi and A., Cassano, Dichloroacetic acid degradation employing hydrogen peroxide and UV radiation Chemosphere, 2007 66 808–815

    Article  PubMed  CAS  Google Scholar 

  25. S. Murov, I. Carmichael and G. Hug, Handbook of photochemistry, Marcel Dekker, New York, 2nd edn, 1993

    Google Scholar 

  26. C. S. Zalazar, M. D. Labas, C. A. Martín, R. J. Brandi, O. M. Alfano and A. E., Cassano, The extended use of actinometry in the interpretation of photochemical reaction engineering data Chem. Eng. J., 2005 109 67–81

    Article  CAS  Google Scholar 

  27. M. Mariani, R. Romero, A. Cassano and C. Zalazar, Degradation of a mixture of glyphosate and 2,4-D in water solution employing the UV/H2O2 process, including toxicity evaluation, in Sustainable Energy Developments, ed. Marta I. Litter, Roberto Candal and J. Martín Meichtry, Advanced Oxidation Technologies - Sustainable solutions for environmental treatments, series editors, Jochen Bundschuh, 2014, ch. 6, vol. 9, pp. 99–116, ISBN: 978-1-138-00127-5

    CAS  Google Scholar 

  28. W. R. Haag and C. C., Yao, Rate Constants for reaction of hydroxyl radicals with several drinking water contaminants Environ. Sci. Technol., 1992 26 1005–1013

    Article  CAS  Google Scholar 

  29. M. Muneer and C., Boxall, Photocatalyzed degradation of a pesticide derivative glyphosate in aqueous suspensions of titanium dioxide Int. J. Photoenergy, 2008 1–7 DOI:10.1155/2008/197346

    Google Scholar 

  30. C. Zalazar, M. E. Lovato, M. Labas, R. Brandi and A., Cassano, Intrinsic kinetics of the oxidative reaction of dichloroacetic acid employing hydrogen peroxide and ultraviolet radiation Chem. Eng. Sci., 2007 62 5840–5853

    Article  CAS  Google Scholar 

  31. K., Levenberg, A method for the solution of certain problems in least squares Q. Appl. Math., 1944 2 164–168

    Article  Google Scholar 

  32. D., Marquardt, An algorithm for least-squares estimation of nonlinear parameters SIAM J. Appl. Math., 1963 11 431–441

    Article  Google Scholar 

  33. S. Mabury and D. Crosby, The relationship of hydroxyl reactivity to pesticide persistence, in Aquatic and Surface Photochemistry, ed. G. R. Helz, R. G. Zepp and D. G. Crosby, CRC Press, Inc., Boca Raton, FL., 1994, pp. 149–161

    Google Scholar 

  34. B. Wols, C. Hofman-Caris Review of photochemical reaction constants of organic micropollutants required for UV advanced oxidation processes in water Water Res., 2012 46 2815–2827

    Article  CAS  PubMed  Google Scholar 

  35. J. L. Bonnet, F. Bonnemoy, M. Dusser and J., Bohatier, Assessment of the potential toxicity of herbicides and their degradation products to nontarget cells using two microorganisms, the bacteria Vibrio fischeri and the ciliate Tetrahymena pyriformis Environ. Toxicol., 2007 22 1 78–91

    Article  CAS  PubMed  Google Scholar 

  36. I. Kalinki, D. Juretic, H. Kusic, I. Peternel and A., Bozic, Structural aspects of the degradation of sulfoaromatics by the UV/H2O2 process J. Photochem. Photobiol., A, 2014 293 1–11

    Article  CAS  Google Scholar 

  37. N. Milovac, D. Juretic, H. Kusic, J. Dermadi and A. L., Bozic, Photooxidative degradation of aromatic carboxylic acids in water: Influence of hydroxyl substituents Ind. Eng. Chem. Res., 2014 53 10590–10598

    Article  CAS  Google Scholar 

  38. J. Mitrović, M. Radović, T. Andelković, D. Bojić, A. Bojić Identification of intermediates and ecotoxicity assessment during the UV/H2O2 oxidation of azo dye Reactive Orange 16 J. Environ. Sci. Health, Part A: Toxic/Hazard. Subst. Environ. Eng., 2014 49 491–502

    Article  CAS  Google Scholar 

  39. M. D. Hernando, S. De Vettori, M. J. Martínez Bueno, A. R. Fernández-Alba Toxicity evaluation with Vibrio fischeri test of organic chemicals used in aquaculture Chemosphere, 2007 68 724–730

    Article  CAS  PubMed  Google Scholar 

  40. R. Zona and S., Solar, Oxidation of 2,4-dichlorophenoxyacetic acid by ionizing radiation: degradation, detoxification and mineralization Radiat. Phys. Chem., 2003 66 137–143

    Article  CAS  Google Scholar 

  41. P. Drzewicz, G. Nalecz-Jawecki, M. Gryz, J. Sawicki, A. Bojanowska-Czajka, W. Głuszewski, K. Kulisa, S. Wołkowicz and M., Trojanowicz, Monitoring of toxicity during degradation of selected pesticides using ionizing radiation Chemosphere, 2004 57 135–145

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina S. Zalazar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mariani, M.L., Romero, R.L. & Zalazar, C.S. Modeling of degradation kinetic and toxicity evaluation of herbicides mixtures in water using the UV/H2O2 process. Photochem Photobiol Sci 14, 608–617 (2015). https://doi.org/10.1039/c4pp00269e

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c4pp00269e

Navigation