Skip to main content
Log in

Environmental considerations on solar disinfection of wastewater and the subsequent bacterial (re)growth

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

In this work, solar disinfection of wastewater was studied, focusing on the effect of selected environmental variables, namely light intensity, continuous/intermittent light delivery, and post-irradiation storage as well as dilution in lake water. These variables were studied for their effect on the disinfection efficiency and on post-irradiation survival/regrowth in undiluted wastewater and in wastewater diluted in lake water at different dilution rates. The bacterial inactivation curves were studied, and distinct kinetic phases were identified and interpreted. The dose primarily influenced the demonstration of phases and total inactivation times, independently of the irradiance. Intermittent illumination unevenly prolonged the required exposure time and highlighted the need for extended illumination times when unstable weather conditions are expected. Post-irradiation survival/regrowth in undiluted wastewater showed three distinct kinetic profiles, with transitions among them largely determined by the applied light dose. Lower doses resulted in similar inactivation profiles to the higher ones, when irradiation was followed by prolonged storage at high dilution rates in lake water. The studied factors show significant design and operation implications for solar wastewater applications based on local environmental conditions and water receptor restrictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Bosshard, M. Bucheli, Y. Meur and T., Egli, The respiratory chain is the cell’s Achilles?heel during UVA inactivation in Escherichia coli Microbiology, 2010 156 7 2006–2015

    Article  CAS  Google Scholar 

  2. T., Douki, The variety of UV-induced pyrimidine dimeric photoproducts in DNA as shown by chromatographic quantification methods Photochem. Photobiol. Sci., 2013 12 8 1286–1302

    Article  CAS  Google Scholar 

  3. K. G. McGuigan, R. M. Conroy, H. J. Mosler, M. du Preez, E. Ubomba-Jaswa, P. Fernandez-Ibanez Solar water disinfection (SODIS): a review from bench-top to roof-top J. Hazard. Mater., 2012 235-236 29–46 DOI:10.1016/j.jhazmat.2012.07.053

    Article  CAS  Google Scholar 

  4. M. Von Sperling Modelling of coliform removal in 186 facultative and maturation ponds around the world Water Res., 2005 39 20 5261–5273

    Article  Google Scholar 

  5. Y. Maïga, K. Denyigba, J. Wethe and A. S., Ouattara, Sunlight inactivation of Escherichia coli in waste stabilization microcosms in a sahelian region (Ouagadougou, Burkina Faso) J. Photochem. Photobiol., B, 2009 94 2 113–119

    Article  Google Scholar 

  6. R. J. Davies-Colley, R. J. Craggs and J. W., Nagels, Disinfection in a pilot-scale “advanced” pond system (APS) for domestic sewage treatment in New Zealand Water Sci. Technol., 2003 48 2 81–87

    Article  CAS  Google Scholar 

  7. R. Khosravi, T. Shahryari, A. Halvani, M. Khodadadi, F. Ahrari and E. A., Mehrizi, Kinetic analysis of organic matter removal in stabilization pond in the wastewater treatment plant of Birjand Adv. Environ. Biol., 2013 7 6 1182–1187

    Google Scholar 

  8. P. Xu, F. Brissaud and A., Fazio, Non-steady-state modelling of faecal coliform removal in deep tertiary lagoons Water Res., 2002 36 12 3074–3082

    Article  CAS  Google Scholar 

  9. N. F. Bolton, N. J. Cromar, P. Hallsworth and H. J., Fallowfield, A review of the factors affecting sunlight inactivation of micro-organisms in waste stabilisation ponds: Preliminary results for enterococci Water Sci. Technol., 2010 61 885–890

    Article  CAS  Google Scholar 

  10. R. J. Craggs, A. Zwart, J. W. Nagels, R. J. Davies-Colley Modelling sunlight disinfection in a high rate pond Ecol. Eng., 2004 22 2 113–122 DOI:10.1016/j.ecoleng.2004.03.001

    Article  Google Scholar 

  11. M. Fabbricino, L. d’Antonio Use of solar radiation for continuous water disinfection in isolated areas Environ. Technol., 2012 33 5 539–544 DOI:10.1080/09593330.2011.584570

    Article  CAS  Google Scholar 

  12. J. Meichtry, H. Lin, L. de la Fuente, I. Levy, E. Gautier, M. Blesa and M., Litter, Low-cost TiO2 photocatalytic technology for water potabilization in plastic bottles for isolated regions. Photocatalyst Fixation J. Sol. Energy Eng., 2005 129 119–126

    Article  Google Scholar 

  13. C. Sichel, J. Tello, M. de Cara, P. Fernández-Ibáñez Effect of UV solar intensity and dose on the photocatalytic disinfection of bacteria and fungi Catal. Today, 2007 129 1-2 152–160 DOI:10.1016/j.cattod.2007.06.061

    Article  CAS  Google Scholar 

  14. G. C. White, White’s handbook of chlorination and alternative disinfectants, Wiley, 2010

    Google Scholar 

  15. P. H. Quek and J., Hu, Indicators for photoreactivation and dark repair studies following ultraviolet disinfection J. Ind. Microbiol. Biotechnol., 2008 35 6 533–541

    Article  CAS  Google Scholar 

  16. K. Oguma, H. Katayama and S., Ohgaki, Photoreactivation of Escherichia coli after low-or medium-pressure UV disinfection determined by an endonuclease sensitive site assay Appl. Environ. Microbiol., 2002 68 12 6029–6035

    Article  CAS  Google Scholar 

  17. E. R. Blatchley, W.-L. Gong, J. E. Alleman, J. B. Rose, D. E. Huffman, M. Otaki and J. T., Lisle, Effects of wastewater disinfection on waterborne bacteria and viruses Water Environ. Res., 2007 79 1 81–92

    Article  CAS  Google Scholar 

  18. K. M. Yamahara, B. A. Layton, A. E. Santoro and A. B., Boehm, Beach Sands along the California Coast Are Diffuse Sources of Fecal Bacteria to Coastal Waters Environ. Sci. Technol., 2007 41 13 4515–4521 DOI:10.1021/es062822n

    Article  CAS  Google Scholar 

  19. M. Berney, H.-U. Weilenmann and T., Egli, Adaptation to UVA radiation of E. coli growing in continuous culture J. Photochem. Photobiol., B, 2007 86 2 149–159

    Article  CAS  Google Scholar 

  20. L. M. Avery, A. P. Williams, K. Killham and D. L., Jones, Survival of Escherichia coli O157:H7 in waters from lakes, rivers, puddles and animal-drinking troughs Sci. Total Environ., 2008 389 2-3 378–385 DOI:10.1016/j.scitotenv.2007.08.049

    Article  CAS  Google Scholar 

  21. L. Haller, E. Amedegnato, J. Poté and W., Wildi, Influence of Freshwater Sediment Characteristics on Persistence of Fecal Indicator Bacteria Water, Air, Soil Pollut., 2009 203 1-4 217–227 DOI:10.1007/s11270-009-0005-0

    Article  CAS  Google Scholar 

  22. A. Chandran, A. A. Mohamed Hatha Relative survival of Escherichia coli and Salmonella typhimurium in a tropical estuary Water Res., 2005 39 7 1397–1403 DOI:10.1016/j.watres.2005.01.010

    Article  CAS  Google Scholar 

  23. D. Kay, C. M. Stapleton, M. D. Wyer, A. T. McDonald, J. Crowther, N. Paul and S., Gardner, Decay of intestinal enterococci concentrations in high-energy estuarine and coastal waters: towards real-time T90 values for modelling faecal indicators in recreational waters Water Res., 2005 39 4 655–667 DOI:10.1016/j.watres.2004.11.014

    Article  CAS  Google Scholar 

  24. I. Boukef, M. El Bour, N. Al Gallas, O. El Bahri, S. Mejri, R. Mraouna and M., Troussellier, Survival of Escherichia coli strains in mediterranean brackish water in the Bizerte lagoon in Northern Tunisia Water Environ. Res., 2010 82 11 2249–2257

    Article  CAS  Google Scholar 

  25. R. T. Noble, I. M. Lee and K. C., Schiff, Inactivation of indicator micro-organisms from various sources of faecal contamination in seawater and freshwater J. Appl. Microbiol., 2004 96 3 464–472 DOI:10.1111/j.1365-2672.2004.02155.x

    Article  CAS  Google Scholar 

  26. E. Darakas, T. Koumoulidou and D., Lazaridou, Fecal indicator bacteria declines via a dilution of wastewater in seawater Desalination, 2009 248 1-3 1008–1015 DOI:10.1016/j.desal.2008.10.017

    Article  CAS  Google Scholar 

  27. OECD Guidelines for Testing of Chemicals, Simulation Test-Aerobic Sewage Treatment 303A, 2001

  28. A.-G. Rincón and C., Pulgarin, Fe3+ and TiO2 solar-light-assisted inactivation of E. coli at field scale: Implications in solar disinfection at low temperature of large quantities of water Catal. Today, 2007 122 1 128–136

    Article  Google Scholar 

  29. A.-G. Rincón and C., Pulgarin, Field solar E. coli inactivation in the absence and presence of TiO2: is UV solar dose an appropriate parameter for standardization of water solar disinfection? Sol. Energy, 2004 77 5 635–648 DOI:10.1016/j.solener.2004.08.002

    Article  Google Scholar 

  30. S. A. Craik, D. Weldon, G. R. Finch, J. R. Bolton and M., Belosevic, Inactivation of Cryptosporidium parvum oocysts using medium-and low-pressure ultraviolet radiation Water Res., 2001 35 6 1387–1398

    Article  CAS  Google Scholar 

  31. M. Berney, H. U. Weilenmann, A. Simonetti and T., Egli, Efficacy of solar disinfection of Escherichia coli, Shigella flexneri, Salmonella Typhimurium and Vibrio cholerae J. Appl. Microbiol., 2006 101 4 828–836 DOI:10.1111/j.1365-2672.2006.02983.x

    Article  CAS  Google Scholar 

  32. J. Ndounla, S. Kenfack, J. Wéthé and C., Pulgarin, Relevant impact of irradiance (vs. dose) and evolution of pH and mineral nitrogen compounds during natural water disinfection by photo-Fenton in a solar CPC reactor Appl. Catal., B, 2014 148-149 144–153 DOI:10.1016/j.apcatb.2013.10.048

    Article  CAS  Google Scholar 

  33. W. Harm, Biological effects of ultraviolet radiation, Cambridge University Press, Cambridge, 1980, vol. 1

  34. E. Ubomba-Jaswa, C. Navntoft, M. I. Polo-Lopez, P. Fernandez-Ibanez and K. G., McGuigan, Solar disinfection of drinking water (SODIS): an investigation of the effect of UV-A dose on inactivation efficiency Photochem. Photobiol. Sci., 2009 8 5 587–595 DOI:10.1039/b816593a

    Article  CAS  Google Scholar 

  35. D. B. Misstear, J. P. Murtagh and L. W., Gill, The Effect of Dark Periods on the UV Photolytic and Photocatalytic Disinfection of Escherichia coli in a Continuous Flow Reactor J. Sol. Energy Eng., 2013 135 2 021012–021012 DOI:10.1115/1.4023179

    Article  Google Scholar 

  36. E., Darakas, A simple mathematical formula describing the survival kinetics of E. coli in natural waters Int. J. Environ. Stud., 2001 58 3 365–372

    Article  Google Scholar 

  37. M. Troussellier, J.-L. Bonnefont, C. Courties, A. Derrien, E. Dupray, M. Gauthier and Y., Martin, Responses of enteric bacteria to environmental stresses in seawater Oceanol. Acta, 1998 21 6 965–981

    Article  Google Scholar 

  38. S. Vidovic, A. K. Mangalappalli-Illathu, H. Xiong and D. R., Korber, Heat acclimation and the role of RpoS in prolonged heat shock of Escherichia coli O157 Food Microbiol., 2012 30 2 457–464

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stefanos Giannakis or César Pulgarin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giannakis, S., Darakas, E., Escalas-Cañellas, A. et al. Environmental considerations on solar disinfection of wastewater and the subsequent bacterial (re)growth. Photochem Photobiol Sci 14, 618–625 (2015). https://doi.org/10.1039/c4pp00266k

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c4pp00266k

Navigation