Skip to main content

Advertisement

Log in

Somatic cell mutations caused by 365 nm LED-UVA due to DNA double-strand breaks through oxidative damage

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Evidence is accumulating indicating that UVA (320–400 nm ultraviolet light) plays an important role in photo-carcinogenesis. UVA is thought to produce reactive oxygen species in irradiated cells through photo-activation of inherent photosensitizers, and was recently reported to cause DNA double-strand breaks (DSBs) in exposed cells. We have investigated the involvement of UVA in mutations and DNA damage in somatic cells using Drosophila melanogaster larvae. Using the Okazaki Large Spectrograph, we previously observed that longer wavelength UVA (>330 nm) was more mutagenic in post-replication repair-deficient D. melanogaster (mei-41) than in the nucleotide excision repair-deficient strain (mei-9). LED-light has recently been developed as a high-dose-rate UVA source. LED-UVA light (365 nm) was also more mutagenic in mei-41 than in mei-9. The mei-41 gene was shown to be an orthologue of the human ATR gene, which is involved in the repair of DSBs through phosphorylation of histone H2AX. In order to estimate the extent to which oxidative damage contributes to mutation, we established a new D. melanogaster strain (urate-null mutant) that is sensitive to oxidative damage and has a marker to detect somatic cell mutations. When somatic cell mutations were examined using this strain, LED-UVA was mutagenic in the urate-null strain at doses that were non-mutagenic in the urate-positive strain. In an effort to investigate the generation of DSBs, we examined the presence of phosphorylated histone H2AvD (H2AX D. melanogaster homologue). At high doses of LED-UVA (>800 kJ m−2), levels of phosphorylated H2AvD (γ-H2AvD) increased significantly in the urate-null strain. Moreover, the level of γ-H2AvD increased in the excision repair-deficient strain but not in the ATR-deficient strain following UVA-irradiation. These results supported the notion that the generation of γ-H2AvD was mediated by the function of the mei-41 gene. It was reported that ATR functions on DSB repair in D. melanogaster. Taken together, we propose a possible pathway for UVA-induced mutation, whereby DNA double-strand breaks resulting from oxidative stress might be responsible for UVA-induced mutation in somatic cells of D. melanogaster larvae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. IARC, IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. List of IARC Evaluations, WHO Press, Lyon, 2012, vol. 100.

  2. F. R. de Gruijl, Photocarcinogenesis: UVA vs UVB, Methods Enzymol., 2000, 319, 359–366.

    Article  PubMed  Google Scholar 

  3. G. P. Pfeifer, Y. H. You and A. Besaratinia, Mutations induced by ultraviolet light, Mutat. Res., 2005, 751, 19–31.

    Article  CAS  Google Scholar 

  4. E. Sage, P. M. Girard and S. Francesconi, Unravelling UVA-induced mutagenesis, Photochem. Photobiol. Sci., 2012, 11, 74–80.

    Article  CAS  PubMed  Google Scholar 

  5. A. Besaratinia, S. I. Kim, S. E. Bates and G. P. Pfeifer, Riboflavin activated by ultraviolet A1 irradiation induces oxidative DNA damage-mediated mutations inhibited by vitamin C, Proc. Natl. Acad. Sci. U. S. A., 2007, 104, 5953–5958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. J. Cadet, T. Douki, J. L. Ravanat and P. Di Mascio, Sensitized formation of oxidatively generated damage to cellular DNA, Photochem. Photobiol. Sci., 2009, 8, 903–911.

    Article  CAS  PubMed  Google Scholar 

  7. E. Kvam and R. M. Tyrrell, Induction of oxidative DNA base damage in human skin cells by UV and near visible radiation, Carcinogenesis, 1997, 18, 2379–2384.

    Article  CAS  PubMed  Google Scholar 

  8. J. Cadet, T. Douki, S. Frelon, S. Sauvaigo, J. P. Pouget and J. L. Ravanat, Assessment of oxidative base damage to isolated and cellular DNA by HPLC-MS/MS measurement, Free Radicals Biol. Med., 2002, 33, 441–449.

    Article  CAS  Google Scholar 

  9. P. J. Rochette, J. P. Therrien, R. Drouin, D. Perdiz, N. Bastien, E. A. Drobetsky and E. Sage, UVA-induced cyclobutane pyrimidine dimers form predominantly at thymine-thymine dipyrimidines and correlate with the mutation spectrum in rodent cells, Nucleic Acids Res., 2003, 31, 2786–2794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. S. Mouret, C. Philippe, J. Gracia-Chantegrei, A. Banyasz, S. Karpati, D. Markovitsi and T. Douki, UVA-induced cyclobutane pyrimidine dimers in DNA: a direct photochemical mechanism?, Org. Biomol. Chem., 2010, 8, 1760–1711.

    Article  CAS  Google Scholar 

  11. S. Mouret, C. Baudouin, M. Charveron, A. Favier, J. Cadet and T. Douki, Cyclobutane pyrimidine dimers are predominant DNA lesions in whole human skin exposed to UVA radiation, Proc. Natl. Acad. Sci. U. S. A., 2006, 102, 13765–13770.

    Article  CAS  Google Scholar 

  12. H. Ikehata, K. Kawai, J. Komura, K. Sakatsume, L. Wang, M. Imai, S. Higashi, O. Nikaido, K. Yamamoto, K. Hieda, M. Watanabe, H. Kasai and T. Ono, UVA1 genotoxicity is mediated not by oxidative damage but by cyclobutane pyrimidine dimers in normal mouse skin, J. Invest. Dermatol., 2008, 128, 2289–2296.

    Article  CAS  PubMed  Google Scholar 

  13. T. Negishi, C. Nagaoka, H. Hayatsu, K. Suzuki, T. Hara, M. Kubota, M. Watanabe and K. Hieda, Somatic cell mutation induced by UVA and monochromatic UV radiation in repair-proficient and -deficient Drosophila melanogaster, Photochem. Photobiol., 2001, 73, 493–498.

    Article  CAS  PubMed  Google Scholar 

  14. M. Toyoshima, S. Takinami, K. Hieda, Y. Furusawa and T. Negishi, The involvement of cell cycle checkpoint-mutations in the mutagenesis induced in Drosophila by a longer wavelength light band of solar UV, Photochem. Photobiol. Sci., 2002, 1, 178–183.

    Article  CAS  PubMed  Google Scholar 

  15. B. N. Ames, R. Cathcart, E. Schwiers and P. Hochstein, Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: A hypothesis, Proc. Natl. Acad. Sci. U. S. A., 1981, 78, 6858–6862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. A. J. Hilliker, B. Duyf, D. Evans and J. P. Phillips, Urate-null rosy mutants of Drosophila melanogaster are hypersensitive to oxygen stress, Proc. Natl. Acad. Sci. U. S. A., 1992, 89, 4343–4347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. B. F. Becker, Towards the physiological function of uric acid, Free Radicals Biol. Med., 1993, 14, 615–631.

    Article  CAS  Google Scholar 

  18. G. S. Scott and D. C. Hooper, The role of uric acid in protection against peroxynitrite-mediated pathology, Med. Hypotheses, 2001, 56, 95–100.

    Article  CAS  PubMed  Google Scholar 

  19. N. Kuzkaya, N. Weissmann, D. G. Harrison and S. Dikalov, Interactions of peroxynitrite with uric acid in the presence of ascorbate and thiols: Implications for uncoupling endothelial nitric oxide synthase, Biochem. Pharmacol., 2005, 70, 343–354.

    Article  CAS  PubMed  Google Scholar 

  20. N. Hayashi, K. Togawa, M. Yanagisawa, J. Hosogi, D. Mimura and Y. Yamamoto, Effect of sunlight exposure and aging on skin surface lipids and urate, Exp. Dermatol., 2003, 12, 13–17.

    Article  CAS  PubMed  Google Scholar 

  21. R. Kohen and I. Gati, Skin low molecular weight antioxidants and their role in aging and in oxidative stress, Toxicology, 2000, 148, 149–157.

    Article  CAS  PubMed  Google Scholar 

  22. R. Arakawa, M. Terao, H. Hayashi, H. Kasai and T. Negishi, Evaluation of oxidative damage induced by natural sunlight in Drosophila, Genes Environ., 2006, 28, 153–159.

    Article  CAS  Google Scholar 

  23. Y. Hamatake, A. Morita, Y. Yuma, K. Okamoto, S. Arimoto, T. Suzuki, H. Kasai, K. Kawai and T. Negishi, Hypersensitivity of a urate-null strain of Drosophila melanogaster to the toxic effects of environmental cigarette smoke, Genes Environ., 2009, 31, 43–46.

    Article  CAS  Google Scholar 

  24. A. Rapp and K. O. Greulich, After double-strand break induction by UV-A, homologous recombination and nonhomologous end joining cooperate at the same DSB if both systems are available, J. Cell Sci., 2004, 117, 4935–4945.

    Article  CAS  PubMed  Google Scholar 

  25. R. Greinert, B. Volkmer, S. Henning, E. W. Breitbart, K. O. Greulich, M. C. Cardoso and A. Rapp, UVA-induced DNA double-strand breaks result from the repair of clustered oxidative DNA damages, Nucleic Acids Res., 2012, 40, 10263–10273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. J. L. Rizzo, J. Dunn, A. Rees, T. M. Rünger, No formation of DNA double-strand breaks and no activation of recombination repair with UVA, J. Invest. Dermatol., 2011, 131, 1139–1148.

    Article  CAS  PubMed  Google Scholar 

  27. J. R. LaRocque, B. Jaklevic, T. T. Su and J. Sekelsky, Drosophila ATR in double-strand break repair, Genetics, 2007, 175, 1023–1033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. A. Kinner, W. Wu, C. Stauddt and G. Iliakis, ?-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin, Nucleic Acids Res., 2008, 36, 5678–5694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. J. P. Madigan, H. L. Chotkowski and R. L. Glaser, DNA double-strand break-induced phosphorylation of Drosophila histone variant H2Av helps prevent radiation-induced apoptosis, Nucleic Acids Res., 2002, 30, 3698–3705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. J. B. Boyd, M. D. Golino and R. B. Setlow, The mei-9a mutant of Drosophila melanogaster increases mutagen sensitivity and decreases excision repair, Genetics, 1976, 84, 527–544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. J. J. Sekelsky, K. S. McKim, G. M. Chin and R. S. Hawley, The Drosophila meiotic recombination gene mei-9 encodes a homologue of the yeast excision repair protein Rad1, Genetics, 1995, 141, 619–627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. J. B. Boyd and R. B. Setlow, Characterization of postreplication repair in mutagen-sensitive strains of Drosophila melanogaster, Genetics, 1976, 84, 507–526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. K. L. Hari, A. Santerre, J. J. Sekelsky, K. S. McKim, J. B. Boyd and R. S. Hawley, The mei-41 gene of D. melanogaster is a structural and functional homolog of the human ataxia telangiectasia gene, Cell, 1995, 82, 815–821.

    Article  CAS  PubMed  Google Scholar 

  34. J. J. Sekelsky, M. H. Brodsky and K. C. Burtis, DNA repair in Drosophila: Insights from the Drosophila genome sequence, J. Cell Biol., 2000, 150, F31–F36.

    Article  CAS  PubMed  Google Scholar 

  35. R. C. Wahl, C. K. Warner, V. Finnerty and K. V. Rajagopalan, Drosophila melanogaster ma-l mutants are defective in the sulfuration of desulfo Mo hydroxylases, J. Biol. Chem., 1982, 257, 3958–3962.

    Article  CAS  PubMed  Google Scholar 

  36. D. L. Lindsley and G. G. Zimm, The genome of Drosophila melanogaster, Academic Press, San Diego, 1992.

    Google Scholar 

  37. U. Graf, F. E. Würgler, A. J. Katz, H. Frei, H. Juon, C. B. Hall and P. G. Kale, Somatic mutation and recombination test in Drosophila melanogaster, Environ. Mutagen., 1984, 6, 153–188.

    Article  CAS  PubMed  Google Scholar 

  38. E. W. Vogel, U. Graf, H.-J. Frei and M. M. J. Nivard, The results of assays in Drosophila as indicators of exposure to carcinogens, in The Use of Short and Medium-term Tests for Carcinogens and Data on Genetic Effects in Carcinogenic Hazard Evaluation, ed. D. B. McGregor, J. M. Rice and S. Venitt, IARC Scientific Publications, No. 146, International Agency for Research on Cancer, Lyon, 1999, pp. 427–470.

    Google Scholar 

  39. H. Frei, F. E. Würgler, Statistical methods to decide whether mutagenicity test data from Drosophila melanogaster assays indicate a positive, negative, or inconclusive result, Mutat. Res., 1988, 203, 297–308.

    Article  CAS  PubMed  Google Scholar 

  40. M. A. Kastenbaum and K. O. Bowman, Tables for determining the statistical significance of mutation frequencies, Mutat. Res., 1970, 9, 527–549.

    Article  CAS  PubMed  Google Scholar 

  41. A. W. Thorne, P. D. Cary and C. Crane-Robinson, Extraction and separation of core histones and non-histone chromosomal proteins, in Chromatin–A Practical Approach, ed. H. Gould, Oxford University Press, Oxford, UK, 1998, pp. 35–57.

    Google Scholar 

  42. Y. Ibuki, T. Toyooka, J. Shirahata, T. Ohura and R. Goto, Water soluble fraction of solar simulated light-exposed crude oil generates phosphorylation of histone H2AX in human skin cells under UVA exposure, Environ. Mol. Mutagen., 2007, 48, 430–439.

    Article  CAS  PubMed  Google Scholar 

  43. A. J. Ridley, J. R. Whiteside, T. J. McMillan and S. L. Allinson, Cellular and sub-cellular responses to UVA in relation to carcinogenesis, Int. J. Radiat. Biol., 2009, 85, 177–195.

    Article  CAS  PubMed  Google Scholar 

  44. T. Negishi, K. Kawai, R. Arakawa, S. Higashi, T. Nakamura, M. Watanabe, H. Kasai and K. Fujikawa, Increased levels of 8-hydroxy-2′-deoxyguanosine in Drosophila larval DNA after irradiation with 364 nm-laser light but not with X-rays, Photochem. Photobiol., 2007, 83, 658–663.

    Article  CAS  PubMed  Google Scholar 

  45. T. M. Rünger and U. P. Kappes, Mechanisms of mutation formation with long-wave ultraviolet light (UVA), Photodermatol. Photoimmunol. Photomed., 2008, 24, 2–10.

    Article  PubMed  Google Scholar 

  46. H. Ikehata and T. Ono, The mechanisms of UV mutagenesis, J. Radiat. Res., 2011, 52, 115–52.

    Article  CAS  PubMed  Google Scholar 

  47. J. D. Mallet and P. J. Rochette, Wavelength-dependent ultraviolet induction of cyclobutane pyrimidine dimers in the human cornea, Photochem. Photobiol. Sci., 2013, 12, 1310–1318.

    Article  CAS  PubMed  Google Scholar 

  48. S. Takinamai, M. Mochizuki, H. Hayatsu, O. Nikaido, M. Kubota, M. Watanabe, M. Hieda, K. Hieda and T. Negishi, Somatic cell mutation and photoproduct formation in Drosophila induced by monochromatic UV-lights contained in the sunlight, Environ. Toxicol., 2000, 15, 496–499.

    Article  Google Scholar 

  49. P. L. Olive, J. P. Banáth, Phosphorylation of histone H2AX as a measure of radiosensitivity, Int. J. Radiat. Oncol., Biol., Phys., 2004, 58, 331–335.

    Article  CAS  Google Scholar 

  50. A. van Daal, E. M. White, M. A. Gorovsky and C. R. Elgin, Drosophila has a single copy of the gene encoding a highly conserved histone H2A variant of the H2A. F/Z type, Nucleic Acids Res., 1988, 16, 7487–7497.

    Article  PubMed  PubMed Central  Google Scholar 

  51. J. E. Cleaver, ?H2Ax: Biomarker of damage or functional participant in DNA repair “All that glitters is not gold!”, Photochem. Photobiol., 2011, 87, 1230–1239.

    Article  CAS  PubMed  Google Scholar 

  52. N. Srivastava, S. Gochhait, P. de Boer and R. N. Bamezai, Role of H2AX in DNA damage response and human cancers, Mutat. Res., 2009, 681, 180–188.

    Article  CAS  PubMed  Google Scholar 

  53. M. A. Spanó, H. Frei, F. E. Würgler and U. Graf, Recombinagenic activity of four compounds in the standard and high bioactivation crosses of Drosophila melanogaster in the wing spot test, Mutagenesis, 2001, 16, 385–394.

    Article  PubMed  Google Scholar 

  54. L. J. Fell, N. D. Paul and T. J. McMillan, Role for non-homologous end-joining in the repair of UVA-induced DNA damage, Int. J. Radiat. Biol., 2002, 78, 1023–1027.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoe Negishi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, X., Ide, N., Higashi, SI. et al. Somatic cell mutations caused by 365 nm LED-UVA due to DNA double-strand breaks through oxidative damage. Photochem Photobiol Sci 13, 1338–1346 (2014). https://doi.org/10.1039/c4pp00148f

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c4pp00148f

Navigation